
203

c h a p t e r

eightSolving Mathematical
Programs

chapterO v e r v i e w

 8.1 Introduction

 8.2 Formulating Mathematical Programs

 8.3 The Risk Solver Platform

 8.4 Applications

 8.5 Summary

 8.6 Exercises

5995 Book.indb 203 8/8/11 3:11:58 PM

204 CHAPTER 8 ■ Solving Mathematical Programs

 8.1 Introduction
This chapter illustrates how to use the Risk Solver Platform as a tool to solve mathematical
programs. We review the basic parts of formulating a mathematical program and present
several examples of how the Solver interprets these parts of the program from the spreadsheet.
We give examples of linear, integer, and nonlinear programming problems to show how the
Solver can be used to solve a variety of mathematical programs. It is important for the reader
to understand this chapter since many IE/OR and business spreadsheet-based DSS applications
involve solving optimization problems, which are mathematical programs. The reader should
be comfortable with preparing the spreadsheet for use with the Solver. In Chapter 19, we revisit
the Solver using VBA commands. We provide several examples of DSS applications that use
the Solver to solve optimization problems, such as Portfolio Management and Optimization.
Please refer to Appendix A for information about the Standard Solver of Excel and the Premium
Solver of Risk Solver Platform. This appendix also discusses Limitations and Manipulations
of the Standard Solver.

In this chapter, the reader will learn how to:

Formulate a mathematical program by determining its decision variables, constraints, ■■

and objective function.
Understand the difference between linear, integer, and nonlinear programming ■■

problems.
Use the Risk Solver Platform to solve a mathematical program.■■

Prepare the spreadsheet with the model parts and then enter the corresponding cells ■■

into the Risk Solver Task Pane.
Read the Solver reports.■■

Solve an example of linear, integer, and nonlinear programming problem using the Risk ■■

Solver Platform.

 8.2 Formulating Mathematical Programs
The Excel spreadsheet is unique because it is capable of working with complex mathematical
models. Mathematical models transform a problem stated in words into a set of equations that
clearly define the values that we are seeking, given the limitations of the problem. Mathematical
models are employed in many fields, including all disciplines of engineering. In order to solve a
mathematical model, we develop a mathematical program that can numerically be solved and
retranslated into a qualitative solution to the mathematical model.

 8.2.1 parts of the Mathematical program
A mathematical program consists of three main parts. The first is the decision variables. Deci-
sion variables are the values that we must determine when we solve a mathematical program.
For example, if a toy manufacturer wants to determine how many toy boats and toy cars to pro-
duce, we assign a variable to represent the quantity of toy boats produced, x1, and the quantity of
toy cars produced, x2. Decision variables are defined as negative, non-negative, or unrestricted.
An unrestricted variable can be either negative or non-negative. Decision variables may also be
integer (take only integer values) or binary (take only 0 or 1 values).

5995 Book.indb 204 8/8/11 3:11:58 PM

 SECTION 8.2 ■ Formulating Mathematical Programs 205

The second part of the math program, called the objective function, is an equation that
represents the goal, or objective, of the model. In the same example of the toy manufacturer,
we want to know the quantities of toy boats and toy cars to produce. However, the goal of the
manufacturing plant’s production may be to increase profit. If we know that we can profit $5
for every toy boat and $4 for every toy car, then our objective function is:

Maximize 5x1 + 4x2

In other words, we want profit to drive us in determining the quantity of boats and cars
to produce. Objective functions are either maximized or minimized; most applications involve
maximizing profit or minimizing cost.

The third part of the math program, the constraints, are the limitations of the problem.
That is, if we want to maximize our profit, as in the toy manufacturer example, we could pro-
duce as many toys as possible if we did not have any limits. However, in most realistic situations,
there are certain limitations, or constraints, that we must consider. Constraints can be a limited
amount of resources, labor, or requirements for a particular demand. These constraints are also
written as equations, or inequalities in terms of the decision variables. That is, if we can use
only 20 hours of labor in a week and we need 0.5 hour to produce each toy boat and 0.3 hour to
produce each toy car, then we write our constraint as follows:

0.5x1 + 0.3x2 ≤ 20

Summary
Decision variables: Variables assigned to quanities to be determined.

Objective Funtion: An equation that states the objective of a model.

constraints: Equations or inequalities that state limits or requirements of a problem.

 8.2.2 Linear, integer, and Nonlinear programming
There are three main categories of problems for which we can use the above math-
ematical program parts: linear programming (LP), integer programming (IP), and
nonlinear programming (NLP).

Linear programming problems have a linear objective function and linear constraints.
That is, there are no variables of multiple powers such as x2 and x3, and no terms involving two
variables such as x1x2. In addition, LP problems consist of decision variables with any range or
interval of values, x ≥ 0 or x ≤ 0. An example of an LP would be a production problem in which
we want to maximize profit by determining how many of several different product types we
want to produce. The objective function could therefore be expressed as:

z p xi i

i

n

=
=
∑

1

where i = product number for n products, pi = profit per product i, and xi = amount produced
of product i. This is therefore a linear objective function. If we assume that the constraints are
also linear, then this is a linear programming problem. We will revisit this example in more
detail in Section 8.3.1.

5995 Book.indb 205 8/8/11 3:11:59 PM

206 CHAPTER 8 ■ Solving Mathematical Programs

Integer programming is related to linear programming in that both the objective function
and constraints are linear; however, some decision variables can have only integer values in a
given range. Integer programming is also applied when decision variables are binary, which
means that they take only the values true or false, yes or no, go or no go—all of which are math-
ematically represented as 0 or 1, respectively. An example of an IP would be a capital budget-
ing problem in which we want to decide which projects to invest in and which not to invest
in. This decision is a yes/no decision that can be represented by the following linear objective
function:

z y xi i

i

n

=
=
∑

1

where i = project number for n projects, yi = NPV per project i, and xi = decision whether or not
to invest in project i. What makes it an integer programming problem is that we limit the values
of xi to 1 or 0 to reflect whether or not we have or have not invested in a project, respectively.
We will revisit this example as well in more detail in Section 8.4.3.

Nonlinear programming problems do not have a linear objective function and/or con-
straints. NLP problems use more sophisticated methods to handle these complex equations. An
example of a NLP would be a warehouse location problem in which we are trying to determine
a warehouse location that minimizes the distance traveled in shipments to/from several facili-
ties. The sum of the distances from multiple facilities to this warehouse would be calculated
as follows:

z x x y yi w i w

i

n

= − + −
=
∑ () ()2 2

1

where i = facility number for n facilities, xi and yi = coordinates of each facility i, and xw and yw
= coordinates of the warehouse. Even if the constraints are all linear, it is still a nonlinear pro-
gramming problem since the objective function is nonlinear. We will also revisit this example
in more detail in Section 8.4.4.

Several algorithms, or methods of solving a mathematical program, are specific to lin-
ear, integer, and nonlinear programming problems. They must simultaneously consider each
constraint in conjunction with the objective function. We will use the algorithms available
in Risk Solver Platform to solve these problems. The Risk Solver Platform uses an algorithm
called the Simplex Method to solve LP problems. The SOCP Barrier Solver uses an interior point
method algorithm to solve LP and quadratic programming (QP) problems. The nonlinear GRG
Solver handles smooth NLP programs. The Evolutionary Solver uses a hybrid of genetic, evolu-
tionary algorithms and classical optimization methods to solve nonsmooth problems, such as
IP problems. The Interval Global Solver uses interval methods to solve NLP problems, or find
solutions to a system of nonlinear equations, or find an “inner solution” to a system of nonlinear
inequalities. Details of obtaining the Risk Solver Platform for Education are available at the
website: www.dssbooks.com. Note that the Risk Solver Platform and its subset products, such as
the Premium Solver, and Standard Solver (which comes with Excel) are trademarks of Frontline
Systems, Inc. The interface of Risk Solver Platform is different from the Premium Solver and
Excel’s Solver. The capabilities of the Premium Solver are identical to the Risk Solver Platform.
However, the Standard Solver can use only LP Simplex, GRG Nonlinear, and Evolutionary
algorithms. There also are limitations on the size of the problems that the Standard Solver can
solve. Please refer to Appendix A for information about the Standard Solver.

5995 Book.indb 206 8/8/11 3:12:00 PM

 SECTION 8.3 ■ The Risk Solver Platform 207

Summary
Linear programming: Both the objective function and the constraints are linear. Decision

variables can have any range or interval of values.

integer programming: An LP in which decision variables can take only integer values in a
given range or binary values.

Binary: Decision variables that take only the values 0 or 1.

Nonlinear programming: Either the objective function or constraints or both are not linear.

algorithm: A method of solving a mathematical model.

risk Solver platform: Solves LP, IP, and NLP models using a variety of algorithms.

premium Solver: Solves LP, IP, and NLP models using a variety of algorithms.

Standard Solver: Uses LP Simplex, GRG Nonlinear, and Evolutionary algorithms.

 8.3 The Risk Solver Platform
We will now discuss how to operate the Risk Solver Platform. In general, the Solver must un-
derstand the problem’s mathematical program parts, which we take care of by preparing our
spreadsheet to contain distinct cells for the decision variables, constraints, and objective func-
tion. We must then tell the Solver if we want to minimize or maximize the problem, or if we
want to solve it for a particular value of the objective function. There are also several options
that we can apply to give more specific instructions to the Solver for solving the problem.

(Note: Upon downloading Risk Solver Platform for Education from the text’s website: www.
dssbooks.com, you will see a new tab on the Ribbon. We recommend that you navigate the
groups of commands listed in this tab in order to familiarize yourself with this package.)

 8.3.1 the risk Solver Steps
To operate the Risk Solver Platform, we must follow three steps: (1) read and interpret the
problem, (2) prepare the spreadsheet, and (3) solve the model and review the results. We will
now describe these steps in detail for the Risk Solver Platform using a Product Mix example
problem. Please refer to Appendix A for a detailed description of these steps for the Standard
Solver of Excel.

Step 1: reaD aND iNterpret the prOBLeM We must first determine the type of problem
that we are dealing with (linear programming, integer programming, or nonlinear program-
ming) and outline the model parts (decision variables, constraints, and objective function). This
is the most important step. It is important to model the problem correctly; otherwise, solutions
may be incorrect and misleading. Whether the problem is an LP, IP, or NLP model does not
affect the model parts but does affect the Engine (algorithm) that is used by the Solver. The LP,
IP, and NLP problems may also require some additional constraint specifications. In each case,
we still need to determine the decision variables, the objective function, and the constraints.
We need to write these mathematically, with the objective function and constraints in terms
of the decision variables.

5995 Book.indb 207 8/8/11 3:12:00 PM

208 CHAPTER 8 ■ Solving Mathematical Programs

Product Mix Problem Description A company produces six different types of products. They
want to schedule their production to determine how much of each product type should be
produced in order to maximize their profits. This situation is known as the “Product Mix”
problem.

Production of each product type requires labor and raw materials, but the company is lim-
ited by the amount of resources available. There is also a limited demand for each product, and
no more than this demand per product type should be produced. Input tables for the necessary
resources and the demand are provided.

This is a linear programming problem, as the constraints and objective function are linear
with respect to the decision variables, as we will see below. Let’s now outline the model parts.

Product Mix Decision Variables For the amount produced of each product type, we use the fol-
lowing variable representation:

x1, x2, x3, x4, x5, x6

In other words, x1 is the amount produced of product 1, x2 is the amount produced of prod-
uct 2, etc. Note that all of these decision variables are non-negative; that is, we cannot produce
a negative amount of any product type.

Product Mix Objective Function The objective is to maximize profit. Profit is calculated as the
sum of the array multiplication of the unit profit, p, and the amount produced of each product
type. We write this equation as follows:

Maximize z = Σj=1…,6 pjxj

Here, p1 is the amount of profit gained per unit of product 1. Therefore, p1*x1 is the amount
of profit per unit of product 1 times the number of units produced of product 1, thus yielding
the total profit from product 1. The same follows for the other products, 2 through 6.

Product Mix Constraints There are two resource constraints: labor, l, and raw material, r. Avail-
able amounts are provided for each resource, and required amounts are provided for the pro-
duction of each product type. We therefore say that the sum of the array multiplication of the
resource requirements and the amount produced of each product type must be less than or
equal to the amounts available of each resource. These equations are written:

Labor Constraint:
Σj=1…,6 ljxj ≤ available labor = 4500

Raw Material Constraint:
Σj=1,…6 rjxj ≤ available raw material = 1600

Here l1 is the amount of labor required per unit produced of product 1. Similarly, r1 is the
amount of raw material required per unit produced of product 1. Therefore, the equations
represent the total labor and raw material needed for all products.

There is also a constraint that we do not produce more than the specified demand D.
Therefore, the amount produced of each product type must be less than or equal to the given
demand quantities. This constraint can be written as follows:

Demand Constraint:
xj ≤ Dj for j = 1 to 6

5995 Book.indb 208 8/8/11 3:12:00 PM

 SECTION 8.3 ■ The Risk Solver Platform 209

Step 2: prepare the SpreaDSheet Next, we transfer these parts of the model into our
Excel spreadsheet, clearly defining each part of our model in the spreadsheet. The Solver inter-
prets our model according to the location of these model parts on the spreadsheet.

In Figure 8.1, we show the overall spreadsheet layout for the Product Mix problem. We have
organized our cells by input, decision variables, constraints, and objective function.

Figure 8.1 The spreadsheet layout for the Product Mix.

Step 2.1: Place the Input Table If the input for the problem is provided for us, we just need to
place it on the spreadsheet in the form of a table. We reference this input when forming our
constraint and objective function formulas.

In our Product Mix problem, the input table is given. For each product type, we know the
labor and raw materials needed to produce the product as well as the unit price and variable
cost. We calculate the unit profit row by subtracting the variable cost from the unit price.

Step 2.2: Set the Decision Variables Cells Next, we create a column (or row) for the decision
variables. These cells should be empty. The Solver places values in these cells for each decision
 variable as it solves the model. We recommend naming the range of decision variables for easier
reference in constraint and objective function formulas.

In the Product Mix problem, the decision variable cells are in the row titled “Amount
produced.”

Step 2.3: Enter the Constraint Formulas Now we place the constraint equations in the spread-
sheet; we enter those separately, using formulas, with an optional description next to each
constraint. Because each constraint is in terms of the decision variables, these formulas should
be in terms of the decision variable cells already defined.

Another important consideration when laying out the constraints in preparation for the
Solver is that there must be individual cells for the right-hand side (RHS) values as well. We
should also place all inequality signs in their own cells. This organization will become clear
once we explain how the Solver interprets our model.

Another advantageous way to keep our constraints organized as we use the Solver is to
name cells. We can also group constraints that have the same inequality signs. The benefit of
this habit will become apparent once we input the model parts for the Solver.

5995 Book.indb 209 8/8/11 3:12:00 PM

210 CHAPTER 8 ■ Solving Mathematical Programs

In the Product Mix problem, we have labeled some ranges on the spreadsheet. We
have named the Decision Variable range “PMDecVar,” the Labor resource requirement row
 “PMLabor,” the Raw Material resource requirement row “PMRawMat,” and the Unit Profit row
“PMUnitProfit.” These names will be helpful for writing the constraint and objective function
formulas as well as for inserting cell references in the Solver, although no range names are
needed for the Solver to work correctly.

To prepare the constraint formulas, we use the SUMPRODUCT function. Remember from
Chapter 4 that this function takes two arrays, or ranges, as parameters for which it will multiply
and sum all values. Referring to the equations written earlier and the range names created, we
write the constraint formulas as follows:

Labor Constraint:
=SUMPRODUCT(PMDecVar, PMLabor)

Raw Material Constraint:
=SUMPRODUCT(PMDecVar, PMRawMat)

The right-hand side values are equal to the “Available” amounts from the Input table (see
Figure 8.2).

Figure 8.2 The Labor and Raw Material constraint formulas use the SUMPRODUCT function.

For the demand constraint, we simply need to ensure that the values in our decision vari-
able range are less than each of the corresponding values in the “Demand” range. We do not
require a formula for this constraint (see Figure 8.3).

Figure 8.3 The Demand Constraint does not require a formula.

Step 2.4: Enter the Objective Function Formula We can now place our objective function in a cell
by transforming this equation into a formula in terms of the decision variables. The spreadsheet
is now prepared for the Solver with all three parts of the model clearly displayed.

In the Product Mix problem, the objective function formula is also written with the SUM-
PRODUCT function (see Figure 8.4). Referring to the equation and range names above, we type
the following formula:

=SUMPRODUCT(PMUnitProfit, PMDecVar)

5995 Book.indb 210 8/8/11 3:12:01 PM

 SECTION 8.3 ■ The Risk Solver Platform 211

Figure 8.4 The objective function formula employs the SUMPRODUCT function.

Step 3: SOLve the MODeL aND review the reSULtS The Risk Solver Platform can now
interpret this information and use algorithms to solve the model. The Solver receives the deci-
sion variables, constraint equations, and objective function equation as input into a hidden
programming code that applies the algorithm to the data. We will explain in more detail how
this programming works when we discuss VBA. To use the Solver, we click on the Risk Solver
Platform > Model > Model command from the Ribbon. The task pane in Figure 8.5 then ap-
pears. The task pane lists a number of analytical tools available, such as Sensitivity Analysis,
Optimization, Simulation, and Decision Trees. We will discuss simulation tools in Chapter 9.
In this chapter we are interested in the optimization tools. The three important parts of the
model that branch out of optimization tools are Objective, Variables, and Constraints. We will
discuss how to use Parameters and Results to perform parametric optimization when solving
the Capital Budgeting problem in Section 8.4.3.

Figure 8.5 The Risk Solver task pane reads the decision variables, constraints, and objective func-
tion as parameters of the model.

5995 Book.indb 211 8/8/11 3:12:01 PM

212 CHAPTER 8 ■ Solving Mathematical Programs

Step 3.1: Set Objective The objective, which refers to the location of the formula for the objective
function, can also be called the set cell. To set this cell, we select the cell where we typed the
objective function formula (cell C22), and then click the Risk Solver Platform > Optimization
Model > Objective button on the Ribbon. From the drop-down list that appears, we select Max
and click on the Normal option from the flyout menu (see Figure 8.6). The objective drop-down
menu lists other options, such as minimize the objective function or remove the current objec-
tive function of a problem. The Solver also provides options to optimize the value (Normal),
the expected value (Expected), or the Value at Risk (VaR), etc., of the current selected cell. The
selected objective cell will now appear in the task pane (see Figure 8.7). We can use the objective
window of the task pane to change the address, sense, or value of the objective cell.

Figure 8.6 The Risk Solver Platform > Optimization Model > Objective button on the Ribbon is
used to set the objective function cell and corresponding goal.

Figure 8.7 Use the objective window to change the address, sense, or value of the objective cell.

Step 3.2: Select Variables Next, we select the decision variables. We start by highlighting our
decision variable cells, and then clicking on the Risk Solver Platform > Optimization Model >
Decisions button on the Ribbon. From the drop-down menu that appears, select the Normal
option. Note that if we have already named the range on our spreadsheet, that name appears au-
tomatically in the Solver task pane after the range is selected. The Solver places different values
in these changing cells and checks the constraints and the objective function value against the

5995 Book.indb 212 8/8/11 3:12:01 PM

 SECTION 8.3 ■ The Risk Solver Platform 213

formulas that we have provided until all are simultaneously satisfied. Other options listed under
the Decisions drop-down list are Recourse and Plot (see Figure 8.8). Recourse decision variables
are used to model stochastic programming problems. The plot option graphs the relationship
that exists between the decision variables and the objective function or the constraints.

Figure 8.8 The Risk Solver Platform > Optimization Model > Decisions button on the Ribbon is
used to set the decision variable cells.

For the Product Mix problem, the variable cells are set to the empty decision variable cells,
which we named “PMDecVar.” Select the objective cell C22 and click Risk Solver Platform >
Optimization Problem > Decisions button on the Ribbon. Select Plot from the Decisions drop-
down menu. The graph in Figure 8.9 confirms that the objective function of the Product Mix
problem is linear.

Figure 8.9 The Plot for the objective cell C22 indicates a linear relation between the decision
variables and the objective function.

5995 Book.indb 213 8/8/11 3:12:01 PM

214 CHAPTER 8 ■ Solving Mathematical Programs

Step 3.3: Add Constraints Now, we need to specify our constraints. To do so, we click on the
Risk Solver Platform > Optimization Model > Constraints button from the Ribbon. From the
Constraints drop-down menu, select Normal and then click on the <= (inequality) sign from
the flyout menu (see Figure 8.10). The dialog box shown in Figure 8.11 then appears. We must
include the following two pieces of information in each added constraint: the cell with the
constraint formula and the cell with the RHS value or a directly entered numerical value. We
click Add to define the next constraints.

Figure 8.10 Click on Risk Solver Platform > Optimization Model > Constraints button from the
Ribbon.

Figure 8.11 Adding constraints involves selecting the cell with the equation formula, choosing
the inequality or equality sign, and selecting the cell with the RHS value. Comments are optional.

Excel allows us to define more than one constraint at a time. By grouping constraints that
have the same inequality signs, we can select an entire range of constraint formulas and RHS
values and choose the common inequality sign. Naming constraints with the same inequality
can also clarify what we add to the Solver and prevent us from making any mistakes. If multiple
ranges are not adjacent, we can select them by holding down the CTRL key or by separating
them with commas in the Constraint window.

We have now added all of our constraints, so we press OK. We can observe all of the
constraints we added. For the Product Mix problem, the labor and raw material constraints
are listed using the column of constraint formulas (C18:C19) and the column of RHS values
(E18:E19). Then the demand constraint is listed using the decision variable cells, named “PM-
DecVar” (C13:H13) and the row of RHS values (C15:H15).

Note that demand constraints are listed as bound constraints; that means that the amount
produced is limited (bound) by demand. To change the left-hand side, the right-hand side, and
sense of a constraint, select the constraint from the Risk Solver task pane (as shown in Figure
8.12). Use the constraint window that appears in the bottom of the task pane to make the changes
necessary. Figure 8.13 presents the completed task pane for the Product Mix problem.

5995 Book.indb 214 8/8/11 3:12:01 PM

 SECTION 8.3 ■ The Risk Solver Platform 215

Figure 8.12 Upon selection of a normal
constraint in the task pane, the normal con-
straint window appears. Use this window to
change the address of the selected cell with the
equation formula, the inequality or equality
sign, and the cell with the RHS value.

Figure 8.13 The final Risk Solver task pane
lists decision variables, constraints, and the
objective function of our model.

Step 3.4: Set Solver Options In Step 1 we identified ours to be a linear programming problem.
To ensure that this is the case prior to selecting a solution method, click on the Analyze with-
out Solving button located in the upper-right corner of the task pane. The model diagnosis
window in the bottom half of the task pane (see Figure 8.13) presents a summary of model
characteristics. The model is diagnosed as LP Convex. All the variables, functions (objective
and constraints), and dependencies are linear. We select Standard LP/Quadratic Engine to solve
the problem.

Let’s review and modify some of the Risk Solver’s Platform and Engine related options
before we do solve the model. Figure 8.14 presents the options selected in the Platform tab. We
have changed the lower bound of the decision variables (Decision Vars Lower) to 0. We check
that the Solve Mode is set to Solve Complete Problem, and the Intended Model Type is Linear.
The rest of the options are kept at their default values.

5995 Book.indb 215 8/8/11 3:12:02 PM

216 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.14 The Platform tab of task pane. Figure 8.15 The Engine tab of the task pane.

Figure 8.15 presents the options we select in the Engine tab prior to solving the problem.
We first discuss the options listed in the General window. Max Time, is the maximum time
that the Solver should take to find a solution to the model. We can set a maximum time at a
small value if we want a quick answer or at a large value if we allow the Solver to try to find a
solution over a longer period of time. If we do not get a Solver solution using the default value
for Max Time, we may consider resolving with a larger time value. The number of iterations is
the next option; it affects the number of iterations (pivots for the Simplex Solver, or the major
iterations for the GRG solver) for which the Solver’s algorithm will run. We increase this value
if the Solver is not able to find a solution initially. Primal (dual) tolerance is an upper bound on
the amount by which the primal (dual) constraints can be violated and be considered feasible.
Set the value of Show Iterations to True if you want the Solver to pause at every iteration. If you
set the value of Use Automatic Scaling to True, then the Solver re-scales the values of the objec-
tive function and constraints internally. This is necessary when there is a mixture of large and
small coefficient values in the constraints or the objective function and the possible values that
the decision variable can take.

For example, if we are solving a binary IP problem whose decision variable values can
only be 0 or 1 and whose constraint coefficients are in the hundreds of thousands, the Solver
will not be able to recognize the problem as an LP model if we choose Standard LP/Quadratic
Engine. In this case, we need to set Use Automatic Scaling to True in order to allow the Solver
to internally scale the constraint coefficients and adjust the costs to maintain proportionality.
Set the value of Assume Non-Negative property to True to ensure that the decision variables

5995 Book.indb 216 8/8/11 3:12:02 PM

 SECTION 8.3 ■ The Risk Solver Platform 217

will not take negative values. Set the value of Bypass Solver Reports to True if you do not need
the reports related to the current solution run. This helps reducing solution time when solving
large problems. We suggest that you keep the value of this option to True when you are in the
process of testing and validating your model. Set the value of Presolve to True to allow the Solver
to perform a presolve step prior to applying the primal or dual simplex method. Select either
option from the Derivates drop-down list to determine how the Solver computes derivates when
solving quadratic programming (QP) problems.

Step 3.5: Solve the Model and Review the Results We now click on Risk Solver Platform > Solve
Action > Optimize button on the Ribbon. From the Optimize drop-down menu, select Solve
Complete Problem. During the time that the Solver seeks for a solution, the Output tab of the
task pane (see Figure 8.16) becomes active and presents a description of the different events that
occur while the problem is being solved. When the Solver finishes, a message is displayed at
the bottom of the task pane indicating the status of the solution, which could be: “Solver found
a solution. All constraints and optimality conditions are satisfied”; “Solver could not find a
feasible solution”; or “The objective (Set Cell) values do not converge.”

Figure 8.16 The Solver gives a description of the different events that occur while the problem is
being solved. When it stops, the Solver also displays the status of the current solution.

If the Solver finds an optimal solution, then we are able to observe this solution in the
background on our spreadsheet. The spreadsheet cells we set when formulating the model now
have values for the decision variable cells. Therefore, they also have values in the constraint and

5995 Book.indb 217 8/8/11 3:12:02 PM

218 CHAPTER 8 ■ Solving Mathematical Programs

objective function cells since they contain formulas referencing the decision variable cells. We
can confirm that all constraints have been satisfied by noting that the values in the constraint
cells with the Solver solution are all less than or equal to, or greater than or equal to, the RHS
values, respectively. If a solution was not found, however, our problem may be infeasible or
unbounded. We discuss these situations in the following section. There may also be an error
in our model, so we may want to check our constraint and objective function formulas as well
as the Solver Options we selected.

After reviewing this solution, we can opt to have some extra reports made from the Solver
solution: the Answer, Sensitivity, Limits, Structure and Parameter Analysis reports. We will dis-
cuss these reports in more detail later. We now use the Solver to find the solution to the Product
Mix problem. In Figure 8.17, the completed Solver solution is shown.

Figure 8.17 The final Solver solution.

The Solver Output tab reveals that a solution was successfully found (see Figure 8.16). We
can view the final results in Figure 8.17. Notice that all constraints are met. The company now
knows how much to produce for each product type and what their maximum profit will be.
(There may be multiple solutions, but the Risk Solver Platform may not display all of them. You
may try re-solving the problem with the previous optimal solution as the starting solution.)

Summary
Steps for using the Standard Solver

Step 1: Read and Interpret the Problem

 1.1: Define Decision Variables

 1.2: Define Objective Function

 1.3: Define Constraint.

5995 Book.indb 218 8/8/11 3:12:02 PM

 SECTION 8.3 ■ The Risk Solver Platform 219

Step 2: Prepare the Spreadsheet

 2.1: Place the Input Table

 2.2: Set the Decision Variables Cells

 2.3: Enter the Constraint Formulas

 2.4: Enter the Objective Function Formula

Step 3: Solve the Model with Risk Solver Platform

 3.1: Set the Objective

 3.2: Select the Variables

 3.3: Add the Constraints

 3.4: Set the Solver Options

 3.5: Solve the Model and Review the Results

infeasibility An infeasible problem is one in which at least one of the constraints cannot be
met. For this example, we consider infeasibility based on the Demand constraint. Note in the
solution presented in Figure 8.17 that some of the product types did not meet their demand.
Since the demand constraint inequalities were "<=", some of the demand is not satisfied in order
to avoid the cost of production. Now let’s assume that the company insists that the demand
must always be met and some surplus quantities can be made too. We now need to change
the Demand constraint inequality from “<=” to “>=”. To do so, we select the Demand (Bound)
constraint from the Model tab of the task pane, and change the Relation property to “>=” (see
Figure 8.18).

Figure 8.18 Changing the Demand Constraint inequality sign.

5995 Book.indb 219 8/8/11 3:12:02 PM

220 CHAPTER 8 ■ Solving Mathematical Programs

However, now when we solve this problem, the output window of the task pane conveys that
the Solver could not find a feasible solution with this modified constraint (see Figure 8.19). If
there are not enough resources available to meet the demand, then the solution is infeasible. The
Feasibility Report, which is displayed as a new worksheet in the current workbook, identifies
the exact constraints that are violated by the current solution. Such a report is very useful when
solving large optimization problems. The Feasibility Report for this example (see Figure 8.20)
indicates that constraint H13 >= H15 is violated. This is the demand constraint for product
type 6. The result of this infeasible solution is shown in Figure 8.21.

Figure 8.19 No feasible solution is found.

Unboundedness An unbounded problem is one in which the objective function can reach
an unreasonably large number (if we are maximizing) or small number (if we are minimizing).
Such a situation implies that the constraints are not inclusive enough. Consider, for example,
that we want to minimize (rather than maximize) profits and the decision variables are allowed
to take non-negative values. In this case the problem is unbounded since there are no lower

5995 Book.indb 220 8/8/11 3:12:02 PM

 SECTION 8.3 ■ The Risk Solver Platform 221

bounds to limit the values of the decision variables, and as a result there is no bound on the
objective function value. Therefore, the smaller (negative) the values assigned to the decision
variables, the smaller the objective function becomes. To observe this, select Objective from
the Solver task pane and change its sense to Minimize as shown in Figure 8.22. Set the value
of Assume Non-Negative to False from the General properties window, in the Engine tab of the
task pane. Now solve the problem. This time, the Solver indicates that objective values did not
converge (see Figure 8.23). That means the minimum value of the objective function can be
very small if the decision variables are allowed to take negative values.

Figure 8.20 The feasibility report identifies the constraint violated by the current solution.

Figure 8.21 The infeasible result.

5995 Book.indb 221 8/8/11 3:12:03 PM

222 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.22 Change the sense of the objective cell to Minimize.

Figure 8.23 The Solver solution does not converge when we minimize profits and relax the non-
negativity assumption.

5995 Book.indb 222 8/8/11 3:12:03 PM

 SECTION 8.3 ■ The Risk Solver Platform 223

 8.3.2 Understanding Solver reports
The three main reports available when using the Risk Solver Platform are the Answer Report,
the Sensitivity Report, and the Limits Report. These reports are generated by Excel and displayed
as new worksheets in the current workbook. To generate these reports, click on the Risk Solver
Platform > Analysis > Reports button on the Ribbon. Select Optimization from the Reports
drop-down menu. Next, select Answer, Sensitivity or Limits reports from the fly-out menu.
We will now briefly review what information is contained in these reports.

Figure 8.24 The Answer Report.

The Answer Report provides the original and final values of the objective cell, the decision
variable cells, and the constraints (see Figure 8.24). It also gives the reference of all of these cells
on the spreadsheet. The names for each cell are based on the row and column labels next to
the tables on our spreadsheet. The formulas for the constraints are provided only as references
for where the formulas are held; in other words, any functions used are not reported here. The
status of the constraint part of the report conveys whether or not a constraint is binding. A

5995 Book.indb 223 8/8/11 3:12:03 PM

224 CHAPTER 8 ■ Solving Mathematical Programs

constraint is binding when its slack value is zero. (The slack value is the limit on the change of
the RHS value of a constraint that will not change the objective function value. For example,
how important is it that the raw materials be less than or equal to 1,600? In the Answer Report,
we see that the raw material constraint is not binding, since the value found by the Solver was
1,236 which still leaves a slack of 364. A binding constraint, on the other hand, shows that there
can be no more improvement in the objective function. For example, the maximum allowed
labor is used—and so that constraint is binding the objective function from further improve-
ment by increasing labor.)

The Sensitivity Report provides information about the decision variable cells and the
constraints (see Figure 8.25) as well as their final values. The reduced cost (or shadow price)
and the allowable increase and decrease indicate how much flexibility can be allowed with any
of these values in order to achieve the desired objective function value. (The reduced cost is
the change that would occur in the objective function value for every unit change of a decision
variable value. For example, in the current solution we produce 0 of product type 1; however,
if we produced 1 unit of product type 1, the objective function value would change by –2.4.
The shadow price is the change that would occur in the objective function value for every unit
change of a constraint RHS value. For instance, if we use one more unit of total labor, the objec-
tive function value would change by 1.4.)

Figure 8.25 The Sensitivity Report.

The Limits Report provides information about the Objective Cell and the Decision Variable
Cells (see Figure 8.26); it also includes the value of each cell. The lower and upper limits of the
Decision Variable Cells are listed next to the corresponding Objective Cell value that would
result if the Decision Variable Cell had the limit value.

5995 Book.indb 224 8/8/11 3:12:03 PM

 SECTION 8.4 ■ Applications 225

Figure 8.26 The Limits Report.

 8.4 Applications
Mathematical models are utilized in many fields to formulate a problem into equations that can
be solved using algorithms. The Solver allows managers and investors to solve these problems
without knowing how the algorithms work. However, each problem must still be interpreted so
that the Solver can read the correct objective cells, decision variable cells, and constraints. Below
are a few examples of applications with the correct interpretation of these three model parts.
These examples are grouped by linear, integer, and nonlinear programming problems. It is
important to ensure that constraints and options are specified to reflect what type of problem
is being solved.

 8.4.1 transportation problem
An example of a linear programming problem is a transportation problem. A company ships
their products from three different plants (one in Los Angeles, one in Atlanta, and one in New
York City) to four regions of the United States (East, Midwest, South, West). Each plant has
a limited capacity on how many products can be sent out, and each region has a demand of
products that they must receive. There is a different transportation cost between each plant, or
each city, and each region. The company wants to determine how many products each plant
should ship to each region in order to minimize the total transportation cost.

The input for this problem is in the first table in Figure 8.27. It contains the unit transpor-
tation cost between each city and each region. It also displays the capacity per plant and the
demand per region.

The decision variables are the amount to ship from each plant to each region. We have
created a table with empty cells for these decision variables. We may represent them mathemati-
cally as follows:

xij = amount shipped from plant in city i to region j

5995 Book.indb 225 8/8/11 3:12:03 PM

226 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.27 The spreadsheet preparation for the Transportation problem.

There are two constraints for this problem: demand and capacity. We need to ensure that
the total number of products shipped from a plant (to each region) is less than or equal to its
capacity, and we also need to ensure that the total number of products received by a region
(from each plant) is greater than or equal to its demand. We have used the SUM function to
create a column and row for these respective constraints. We have then copied the capacity
and demand from the input table as the RHS value. We may represent these two constraints
mathematically as follows:

Σj=1,..,4 xij ≤ ui for each i (here, ui = capacity per plant at city i)
Σi=1,..,3 xij ≤ dj for each j (here, dj = demand per region j)

We create these constraint formulas in Excel by using the SUM function. For the capacity
constraint, we create a column titled “Sent” to the right of the decision variable table. In this
column, we sum the total shipment amounts from each city to all plants. Each city has a sepa-
rate formula in this column. For example, for “LA,” there is a cell in the “Sent” column with
the formula to sum all shipment amounts from “LA” shipped to each region. For the demand
constraint, we create a row titled “Received” below the decision variable table. In this row, we
sum the total shipment amounts from all cities to a particular plant. Each region has a separate
formula in this row. For example, for the “East” region, there is a cell in the “Received” row with
the formula to sum all shipment amounts from each city shipped to the “East” region.

The objective function is to minimize the total transportation costs. We need to sum the
array multiplication between the given costs between each plant and region with the amount
shipped between each plant and region. We can represent this mathematically as follows:

Minimize z = Σi=1,…3 Σj=1…,4 cijxij (here, cij = cost of shipping from plant in city i to region j)

To create this formula in Excel, we use the SUMPRODUCT function. We have also named
the range of decision variables as “TransShipped” and the range of input costs as “TransCosts,”
so the formula for the objective function is simply:

5995 Book.indb 226 8/8/11 3:12:03 PM

 SECTION 8.4 ■ Applications 227

=SUMPRODUCT(TransShipped, TransCosts)

We are now ready to use the Solver (see Figure 8.27). We set the objective cell and choose
Min for our objective function. We then set the variables (notice that the name of this range
appears in the Solver task pane). We add both the capacity and demand constraints to the con-
straint list. Figure 8.28 displays the completed Risk Solver task pane. It is also very important
that we specify two options for this linear programming problem as well: select Standard LP/
Quadratic Engine as the solution method; and set the value of Assume Non-Negative property
to True since negative values for the decision variables would not make sense in the context of
this problem.

Figure 8.28 Completing the Risk Solver task pane.

The Solver solution appears in Figure 8.29. We have found the number of products to be
shipped from each plant to each region and the value of the resulting minimal transportation
cost. We can also check that all constraints have been met.

Figure 8.29 The Solver solution to the Transportation problem.

5995 Book.indb 227 8/8/11 3:12:04 PM

228 CHAPTER 8 ■ Solving Mathematical Programs

 8.4.2 workforce Scheduling
Another example of a linear programming problem is a Workforce Scheduling problem. A
company wants to schedule its employees for every day of the week. Employees work 5 consecu-
tive days, so the company wants to schedule on which day each employee starts working, or, in
other words, how many employees start their five-day work week each day. There is a certain
minimum number of employees needed each day of the week. The objective function is to find
the schedule that minimizes the total number of employees working for the week.

As shown in the first table of Figure 8.30, the main input for this problem is the number of
workers needed for each day of the week. We also know that each employee works 5 consecu-
tive days. We have represented this schedule in the second table by recording a sequence of 1’s
beginning on the day listed in each row. So, the Monday row has a 1 in the Monday, Tuesday,
Wednesday, Thursday, and Friday columns. The Tuesday row has a 1 in the Tuesday, Wednes-
day, Thursday, Friday, and Saturday columns, and so on. This table of consecutive 1’s will be
used for the constraint formula to calculate the number of people working each day.

Figure 8.30 The spreadsheet preparation for the Workforce Scheduling problem.

The decision variables for this problem are the number of employees who will begin work-
ing (for 5 consecutive days) on each day of the week. We can represent this mathematically as
follows:

xi = number of employees that start work on day i

The column next to the second table with empty cells (B9:B15) is for the decision variables.
We have also named this range “SchedDecVar.”

There is only one constraint for this problem, which is to ensure that the total number of
employees working on a given day (regardless of which day they started working) is greater
than or equal to the number of employees needed on that particular day. We can represent this
mathematically as follows:

Σj=1…,7 xisij ≥ di for each i = 1,…,7 (here, sij = five-day shift values for each day j
di = number employees needed on day i)

5995 Book.indb 228 8/8/11 3:12:04 PM

 SECTION 8.4 ■ Applications 229

To create these formulas in Excel, we again use the SUMPRODUCT function. We sum the
array multiplication of the decision variable column with the column of 1’s for each day. Since
we have named our decision variable range, this formula is:

=SUMPRODUCT(SchedDecVar, D9:D15)

This formula appears in Figure 8.30. The DayColumn letter value would change from D to
J for Monday through Sunday, respectively.

The objective function is to minimize the total number of employees needed. Mathemati-
cally, this can be written as follows:

Minimize z = Σi=1…,7 xi

To determine this value, we simply need to sum the total number of employees starting on
each day of the week. The formula we use is:

=SUM(SchedDecVar)

We are now ready to use the Solver (see Figure 8.31), so we specify the objective and choose
Min for the objective function. We then set the variables. Notice that the name of this range
appears in the Solver task pane. We next add one constraint to the constraint list. It is also very
important that we specify Standard LP/Quadratic Engine for solving the problem, and set the
Assume Non-Negative property to True.

Figure 8.31 The completed Solver task pane for the Workforce Scheduling problem.

The Solver solution, shown in Figure 8.32 reveals the number of employees who will start
work on each day of the week. We can also check that all the constraints are met. However, we
notice that some of the results of the decision variables and objective function are non-integer.

5995 Book.indb 229 8/8/11 3:12:04 PM

230 CHAPTER 8 ■ Solving Mathematical Programs

Technically, this solution is correct for the way we communicated with the Solver, but it is not
realistic to hire a total of 19.33 employees.

Figure 8.32 The Solver solution for the Workforce Scheduling problem.

Therefore, we need to enforce integer decision variables, thus making this an integer pro-
gramming problem. To accomplish this, we first highlight the range of decision variables and
then click on the Risk Solver Platform > Optimization Model > Constraints button on the Rib-
bon. From the Constraints drop-down menu, select Variable Type/Bound. Select Integer from
the options in the fly-out menu as shown in Figure 8.33.

Figure 8.33 The additional constraint enforces the decision variables to be integers.

Note that an extra constraint has been added to the constraint list in the Solver task pane
(see Figure 8.34). Since we named our decision variable range, this new constraint is displayed
in the constraint list simply as:

SchedDecVar = integer

5995 Book.indb 230 8/8/11 3:12:04 PM

 SECTION 8.4 ■ Applications 231

Figure 8.34 The modified Solver task pane.

The updated solution now has integer values for the decision variables and an objective
function value that is more realistic (see Figure 8.35).

Figure 8.35 The updated Solver solution for the Scheduling problem.

Let’s consider that the management is expecting an increase of business on Saturdays.
We may wonder what will happen to the total number of employees required if the number
needed on a Saturday increased from 9 to 16. We could increase manually the value of Number
Required by adding one unit at a time and reoptimizing the corresponding problem. However,
as the number of problems we test increases, this procedure will become cumbersome. The
Risk Solver Platform provides an easier way to automate this process by performing multiple
parameterized optimizations.

5995 Book.indb 231 8/8/11 3:12:04 PM

232 CHAPTER 8 ■ Solving Mathematical Programs

We first need to make some modifications to our spreadsheet (see Figure 8.36) before per-
forming multiple optimizations. We have 8 different scenarios to optimize. For each scenario
we identify the number of employees needed on a Saturday (cells M10:M17).

The first modification we make to our model is writing this formula in cell I19 (which
represents Saturday requirements.):

=PsiOptParam(M10:M17)

Figure 8.36 Problem modifications to handle parameterized optimization.

The PsiOptParam() is a function available in Risk Solver Platform, and supports multiple
parameterized optimizations. This function changes the value of a parameter in the problem
(cell I19) as each optimization run is performed.

The second modification we make is writing this formula in cell N10:

=PsiOptValue($C22$,L10)

We copy this formula to cells N10:N17. The PsiOptValue() function allows us to gain access
to the optimal solution value (cell C22) of each optimization run. Initially, the values of PsiOpt-
Value() function in cells N10:N17 is N/A since we have not executed the multiple optimization
runs yet. Finally, we set the value of Optimizations to Run property to 8 in the Platform tab of
Solver task pane, and solve the problem. Figure 8.37 presents the total number of employees
needed as Saturday requirements increase. The solution presented in cells B9:B15 corresponds
to the fourth optimization run. To observe solutions of other runs, select the corresponding
Opt # from Tools group of Risk Solver Platform tab on the Ribbon.

5995 Book.indb 232 8/8/11 3:12:04 PM

 SECTION 8.4 ■ Applications 233

Figure 8.37 Total number of employees needed as Saturday requirements increase.

 8.4.3 capital Budgeting
An example of an integer programming problem is the Capital Budgeting problem; it has an
additional integer constraint which allows the decision variables to take only binary values
(0 or 1). In this problem, there are 20 projects in which a company, or individual, can invest.
Each project’s net present value (NPV) and cost per year are provided. The company, or inves-
tor, wants to determine how much to invest in each project, given a limited amount of yearly
funds available, in order to maximize the total NPV of the investment.

The input table lists the NPV and yearly costs for each project (see Figure 8.38).
The decision variables for this problem are the projects that we do and do not invest in.

These will have yes/no or go/no go values. We represent these binary options using 1’s and 0’s.
Mathematically, the decision variables can be written as follows:

yi = {0,1} = no/yes for investing in project i

We have to ensure that the decision variables are given only binary values when we add
constraints to the Solver. We name this range “CBDecVar.”

There is only one constraint for this problem, which is that no more than the yearly avail-
able funds can be spent annually. Since each project has associated yearly costs, we must sum
the costs of all of the projects that we have invested in each year to determine if this constraint
is met. This constraint is written mathematically as:

Σi =1,...,20 yicij ≤ uj for each j = 1,…,6 (here, cij = cost of investing in project i in year j)

5995 Book.indb 233 8/8/11 3:12:05 PM

234 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.38 The input table for the Capital Budgeting problem.

To create these formulas in Excel, we again use the SUMPRODUCT function. The arrays
for this function are the decision variables and the column of yearly costs from the input table.
Since the decision variable values are binary, only the costs for the projects in which we will
invest will be summed. Applying the range name given to the decision variables, the formula
for the cost incurred in year 1 is:

SUMPRODUCT(CBDecVar,D4:D23)

Similar expressions can be formed for other years. The objective function is to maximize
the total NPV. Mathematically, it is written as follows:

Maximize z = Σi =1,...,20 yipi (here, pi = NPV for project i)

To determine this, we sum the array multiplication of the decision variables and the col-
umn of NPV values for each project. We have named this NPV column “CB_NPV.” Using this
range name and the name of the decision variable range, this formula is:

=SUMPRODUCT(CBDecVar, CB_NPV)

See Figure 8.39 for the location and formulation of these model parts.
Now we are ready to use the Solver. After specifying the objective cell and Max for the

objective function, the Variables, and the one constraint, we must also include the additional
binary variable constraint. To do so, we highlight the decision variables and use the constraints
drop-down menu on the Ribbon to set the variable type to binary as is Figure 8.40. Now, when
we return to the Solver task pane (see Figure 8.41), we can see that this additional constraint
has been added as:

CBDecVar = binary

5995 Book.indb 234 8/8/11 3:12:05 PM

 SECTION 8.4 ■ Applications 235

Figure 8.39 Spreadsheet preparation for the Capital Budgeting problem.

Figure 8.40 Adding an additional constraint to enforce binary decision variable values.

We select the Standard Evolutionary Engine as the solution method for this problem, and
set the value of Assume Non-Negative property to True. The Engine tab of the task pane dis-
plays the options of this Engine as shown in Figure 8.42. We set the values of convergence, and
maximum time without improvement as shown, and keep the rest of the parameters at their
default values.

5995 Book.indb 235 8/8/11 3:12:05 PM

236 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.41 The completed Solver task pane for the Capital Budgeting problem with binary
decision variables.

Figure 8.42 The Standard Evolutionary Engine window options.

5995 Book.indb 236 8/8/11 3:12:05 PM

 SECTION 8.4 ■ Applications 237

Now, when we apply the Solver, we find that several iterations of the Genetic Algorithm
are being run. The objective function value for each iteration is plotted in the task pane. As
you see from Figure 8.43, the integer gap for the solution found is zero, which implies that the
solution found is optimal.

Figure 8.43 The Solver Results window explains why the Solver stopped.

Note that the solution found is provided as 1’s and 0’s in the column of decision variables
(see Figure 8.44). This result can be interpreted as invest in the projects with 1’s; do not invest
in the projects with 0’s. Therefore, in order to maximize NPV, we should invest in only 12 of
the projects.

 8.4.4 warehouse Location
The Warehouse Location problem is an example of a nonlinear programming problem. A com-
pany stores all of its products in one warehouse. Its customers are in cities around the United
States and the management is trying to determine the best location for their warehouse in order
to minimize total transportations costs. Each city’s location is identified by its latitude and
longitude. The number of shipments made to each city is also provided. We are to determine
the warehouse location based on its latitude and longitude values.

5995 Book.indb 237 8/8/11 3:12:05 PM

238 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.44 The Solver solution for the Capital Budgeting problem.

The input for this problem is the location of each city identified by its latitude and longitude.
We are also provided with the number of shipments made to each city. This input is illustrated
in the first table of Figure 8.45. We have named the column of shipments “WHShipments.”

Figure 8.45 Spreadsheet preparation for the Warehouse Location problem.

5995 Book.indb 238 8/8/11 3:12:05 PM

 SECTION 8.4 ■ Applications 239

The two decision variables are the latitude and longitude values of the warehouse location.
We will represent them mathematically as follows:

a = warehouse latitude, b = warehouse longitude

We have created two empty cells for these and named each one “WHLat” and “WHLong,”
respectively.

There is only one constraint for this problem, which is that the latitude and longitude for
the warehouse location must be between the values of 0 and 120. Mathematically, this can be
written as follows:

0 ≤ a ≤ 120
0 ≤ b ≤ 120

We only need to add the constraint that they be less than or equal to 120 since non-nega-
tivity is a Solver option.

We now need to keep track of the distances between each city and the possible warehouse
location. These distances are calculated using the following nonlinear equation:

dj = 69√((a – aj)2 + (b – bj)2) (here, dj = distance per city j and aj and bj are the latitude and
longitude for each city j, respectively)

In Excel, this equation can be created using the SQRT function as follows:

=69*SQRT((WHLat-CityLatitude)^2 + (WHLong-CityLongitude)^2)

The CityLatitude and CityLongitude are calculated from the columns of the input table for
each city row. The SQRT function calculates the square root, which is a nonlinear manipulation
of the decision variables. This column of distances appears in Figure 8.46. We have named this
column “WHDist.” (Note: The value 69 is based on the earth’s curvature and is only used when
computing latitude and longitude distances for U.S. cities.)

Figure 8.46 Calculating the distance between each city and the possible warehouse location.

5995 Book.indb 239 8/8/11 3:12:06 PM

240 CHAPTER 8 ■ Solving Mathematical Programs

The objective function is to minimize the total distance traveled from the warehouse to
each city. It can be written mathematically as follows:

Minimize z = Σ=1 to 14 djsj (here, sj = shipments sent to city j)

In Excel, we use the SUMPRODUCT function to find the sum of the array multiplication
between this column of distances and the column of shipments made to each city from the input
table. Since we have named both of these ranges, the formula for the objective function is:

=SUMPRODUCT(WHDist, WHShipments)

See Figure 8.47. The completed optimization model is presented in Figure 8.48.

Figure 8.47 The objective function formula for the
Warehouse Location problem.

Figure 8.48 The completed optimization model for
the Warehouse Location problem.

Let us now use the Standard GRG Nonlinear Engine to solve this nonlinear programming
problem. We begin by setting the objective cell and choosing Min for the objective function.
Then we set the variables and the constraints, and set the value of Assume Non-Negative to
True. Next, we choose Standard GRG Nonlinear Engine from the list presented in the Engine
tab of the task pane (see Figure 8.49). We set the value of Max Time and iterations to 100, and
keep the rest of the parameters at their default values as shown. Now we are ready to solve the
problem. The output of Solver’s task pane indicates that the Solver has converged to the current
solution (see Figure 8.50).

5995 Book.indb 240 8/8/11 3:12:06 PM

 SECTION 8.4 ■ Applications 241

Figure 8.49 The GRG Engine general properties.

Figure 8.50 The output tab of Solver’s task pane indicates that the Solver has converged to the current solution.

5995 Book.indb 241 8/8/11 3:12:06 PM

242 CHAPTER 8 ■ Solving Mathematical Programs

The solution appears in Figure 8.51. The latitude and longitude for the warehouse location
are displayed with the corresponding total minimal distance to be traveled to each city for all
shipments.

Figure 8.51 The Solver solution for the Warehouse Location problem.

To summarize, we have taken in this chapter five examples of linear programming, in-
teger programming, nonlinear programming, and parameterized optimization models, and
demonstrated how to formulate and solve them in Excel. We have included several practice
additional formulations in the Excel worksheets for this chapter and we encourage the reader
to work them out.

 8.5 Summary
The three parts of a mathematical model are deci-■■

sion variables, objective function, and constraints.
The three primary types of mathematical models ■■

are linear, integer, and nonlinear programming
problems.
Using Risk Solver Platform involves three main ■■

steps: reading and interpreting the problem to
determine the three parts of the model, prepar-
ing the spreadsheet so that the Solver can read the
data, and running the Solver.

Several applications of mathematical modeling ■■

exist for which Solver can be a useful tool. Some
LP examples are transportation and workforce
scheduling. An IP example is capital budgeting,
and an NLP example is a warehouse location
problem.
We use the multiple parameterized optimization ■■

capabilities of Risk Solver Platform to solve a mul-
tiscenario workforce scheduling problem.

5995 Book.indb 242 8/8/11 3:12:06 PM

 SECTION 8.6 ■ Exercises 243

 8.6 Exercises
8.6.1 review Questions
 1. What are the three components of a mathemati-

cal model?
 2. How does integer programming differ from

linear programming?
 3. How do we identify an NLP problem?
 4. What are the three main steps involved in using

Risk Solver Platform?
 5. How should constraint equations be entered into

a spreadsheet when using the Solver?
 6. How is the objective cell used in the Solver?
 7. How can you ensure that negative quantities are

not produced in a Solver solution?
 8. What additional constraint is necessary to

change a linear programming Solver model into
an integer programming model?

 9. What additional constraint is needed to enforce
binary decision variables?

 10. Give an example of an instance when the Solver
could be applied to solve a problem. State what
the objective function, decision variables, and
constraints would be for your example.

 11. What is a parameterized optimization problem?
 12. Discuss how you would use two Risk Solver

Platform functions dedicated to multiple param-
eterized optimizations.

 13. What are the main solution engines used by the
Solver?

 14. What does this message imply: “Solver could not
find a feasible solution”?

 15. What are the two parameters for the Standard
GRG Nonlinear Engine that are set in Solver task
pane?

8.6.2 hands-On exercises
Note: Please refer to the file “Chapter_08_Exercises.
xlsx” for the associated worksheets noted for the
hands-on exercises. The file is available at www.dss-
books.com.

 1. Use the Risk Solver Platform to determine the
solution to the following LP model:

Maximize Q = 3X + 4Y – 5Z
Subject to: 5X + Z ≤ 1502

 X + 4Y ≤ 100
 10Z – 2X – 3Y ≥ 20
 X, Y, Z ≥ 0

 2. A distribution center for a department store has
four trucks available to deliver products to retail
stores. The company accrues shipping costs for
all boxes that it ships and losses for all boxes that
cannot fit on one of the four trucks and must be
shipped later. Construct a model formulation
that minimizes the total cost by determining the
optimal number of boxes of each product to be
delivered by each truck. Each truck has a trailer
volume of 1000 ft3 and a weight limit of 50,000
lbs. (Refer to worksheet 8.2.)

 3. Referring to the model formulated in the previ-
ous exercise, use the Solver to find the optimal
number of boxes of each product to ship in each
truck. Adjust the values for amount, size, weight,
cost of shipping, and loss if shipped late, and
use the Risk Solver Platform to find the optimal
solution.

 4. A toy company is expanding its toy vehicle
product line. The company formerly produced
only toy trains but now is expanding the line
to include toy cars, trucks, and airplanes. The
amount of each type of vehicle to produce must
now be determined. A given table displays the
expected production cost, sales price, required
machine hours, and required labor hours to pro-
duce a single unit of each type of toy vehicle. It
costs $200 an hour to run the machine that pro-
duces cars, trucks, and trains and $250 an hour
to run the machine that produces airplanes. All
toy assembly workers are paid a wage of $7.25 an
hour. Based on historical data, the product line
manager forecasts that the demand for trains,
cars, and trucks will be at least 500 units, and
the demand for airplanes will be at least 250
units. The production cost of all toy vehicles
cannot exceed $10,000, and no more than 1,000
labor hours can be spent on production. For-
mulate this problem as an integer programming
model that will maximize the profit earned by
the company’s toy vehicle product line. Use the
Risk Solver Platform to find the optimal number
of each type of toy vehicle to produce. (Refer to
worksheet 8.4.)

5995 Book.indb 243 8/8/11 3:12:06 PM

244 CHAPTER 8 ■ Solving Mathematical Programs

 5. Consider the problem presented in the previous
exercise. Use multiple parameterized optimi-
zation capabilities of the Risk Solver Platform
to see the impact of increasing production
costs from $10,000 to $20,000 (in increments
of $1,000) on profits. Graph the relationship
between production costs and optimal profits.
Comment on the results.

 6. An agricultural supply company is developing
a livestock feed mix that will consist of three
ingredients: A, B, and C. An input table displays
nutrition and cost information per ounce of each
of these ingredients. The company wants to cre-
ate a mix that contains no more than 750 calo-
ries per ounce and no more than 10 grams of fat.
The desired mix should also meet at least 25%
of the Recommended Daily Allowance (RDA)
of each of the following nutrients: Vitamin A,
Vitamin D, and Protein. The company wants
to develop the feed mix as cheaply as possible.
Formulate this problem as a linear programming
model, and use the Solver to find the optimal
percentages of each ingredient to include in the
feed mix. (Refer to worksheet 8.6.)

 7. Using the Solver model that you developed in
the previous exercise to perform the following.
 a. Trace the dependents of each decision

 variable.
 b. Trace the precedents of the target cell and

the constraint cells.
 c. Use the multiple parameterized optimiza-

tion capabilities of Risk Solver Platform to see
the impact of increasing the amount of calo-
ries per ounce from 750 to 1,000 (in incre-
ments of 10) on costs.

 8. A hardware manufacturer uses four worksta-
tions to produce nuts and bolts. An input table
provides the number of minutes required to
create a batch of nuts or bolts at each worksta-
tion. Another input table lists the cost of ma-
chining a batch of nuts or bolts. The machines at
each workstation run for 16 hours a day, 5 days
a week. A minimum of 700 batches of nuts and
1,000 batches of bolts must be produced each
week. Use the Solver to determine the optimal
number of batches of nuts and bolts to produce
at each workstation in order to minimize the
cost of machining. (Refer to worksheet 8.8.)

 9. Suppose that you have $0.97 worth of coins in
your pocket. You know that you have three times
as many nickels as there are dimes. You also
know that you have at least five pennies and no
more than two quarters. Use the Solver to deter-
mine what number of each coin type you have in
your pocket.

 10. A venture capitalist is trying to determine which
of three projects to finance: project A, project
B, and/or project C. She plans to finance as
many projects as necessary to maximize her
total return. She has a total of $400,000 to in-
vest in the first year and $200,000 to invest in
each subsequent year. An input table displays
the implementation cost per year (in thousands
of dollars) of each project. Projects A, B, C will
yield an estimated return of $550,000, $750,000,
and $675,000, respectively, at the end of three
years. Formulate this problem as a binary pro-
gramming model, and use the Solver to find the
optimal combination of projects for the capital-
ist to finance. Use the multiple parameterized
optimization capabilities of Risk Solver Platform
to see the impact of increasing the total budget
from $800 to $1,000 (in increments of $100) on
maximum return. Assume that a $100 increase
in the total budget is distributed as follows: $50
for year 1, $25 for year 2, and $25 for year 3.
(Refer to worksheet 8.10.)

 11. An engineering student is trying to determine
how many hours of studying to devote to each
of his subjects in order to maximize his overall
grade-point average this semester. To do so, he
predicts the grade average he will receive for
studying different amounts of time in each of his
classes. An input table displays his predictions.
He wants to study no more than a total of 40
hours per week. He estimates that the amount
of time he should study physics is double the
amount of time he should study economics, and
the amount of time he should study calculus is
in between those two values. He also estimates
that he will devote equal amounts of time to cal-
culus and chemistry. Formulate this problem as
a linear programming model, and use the solver
to find the optimal solution. (Refer to worksheet
8.11.)

 12. During each 4-hour period, a small town’s police
force requires the following number of on-duty

5995 Book.indb 244 8/8/11 3:12:06 PM

 SECTION 8.6 ■ Exercises 245

police officers: 8 from midnight to 4 AM, 7 from
4 AM to 8 AM, 6 from 8 AM to noon, 6 from
noon to 4 PM, 5 from 4 PM to 8 PM, and 4 from
8 PM to midnight. Each police officer works two
consecutive 4-hour shifts. Formulate and solve
an LP that can be used to minimize the num-
ber of police officers needed to meet the daily
 requirements.

 13. A retailer store accepts orders made by telephone
7 days a week, from 8 AM to 5 PM. The manage-
ment has estimated the number of people needed
daily in the call center to cover incoming orders.
The employees work 5 consecutive days per
week. The salary is $100/day to work on Monday
through Friday and $150/day to work on the
weekend. Formulate the problem as an integer
programming problem that minimizes the cost
of staffing the call center. Use Risk Solver Plat-
form to optimize this problem. (Refer to work-
sheet 8.13.)

 14. Refer to Hands-On Exercise 12. Suppose part-
time staff working 3 consecutive days during
Monday to Friday can be hired at a cost of $110/
day. The increased cost reflects the higher train-
ing and turnover costs associated with part-time
employees. The number of such staff cannot ex-
ceed 5. Extend the integer programming model
to incorporate this option. Use the Risk Solver
Platform to optimize the problem.

 15. A production company blends silicon and nitro-
gen to produce two types of fertilizers. Fertilizer
1 contains 40% nitrogen and 60% silicon. Fertil-
izer 2 contains 30% nitrogen and 70% silicon.
The selling price for fertilizer 1 is $70/lb and for
fertilizer 2 is $40/lb. The company can purchase
up to 80 lbs of nitrogen at $15/lb and up to 100
lbs of silicon at $10/lb. The company should
produce at least 80 lbs of fertilizer 1 and at least
30 lbs of fertilizer 2. Determine the amounts
of fertilizers 1 and 2 that maximize the profit.
Formulate this problem as a linear programming
problem and use the Risk Solver Platform to find
the solution.

 16. A local bakery sells blueberry and chocolate
muffins in packs of four. In a week, the bakery
bakes, at most, 65 packs of muffins. The cost
and demands per pack are presented in an input
table. It costs $.50 to hold a pack of blueberry
muffins and $.40 to hold a pack of chocolate

muffins in inventory for a week. Formulate and
solve an LP to minimize total cost of meeting
next three weeks’ demands. (Refer to worksheet
8.16.)

 17. A company supplies goods to three customers,
each of whom requires 30 units. The company
has two warehouses. Warehouse 1 has 40 units
available and warehouse 2 has 30 units available.
The costs of shipping 1 unit from the warehouse
to a customer are shown in worksheet 8.17.
There is a penalty for each unmet customer unit
of demand. With customer 1, a penalty cost
of $90 is incurred, with customer 2, $80, and
with customer 3, $110. Formulate and solve a
transportation problem to minimize the sum of
shortage and shipping costs. (Refer to worksheet
8.17.)

 18. Referring to the above problem, suppose that
extra units could be purchased and shipped
to either warehouse for a total cost of $100 per
unit and that all customer demand must be met.
Formulate and solve this transportation problem
to minimize the sum of purchasing and shipping
costs.

 19. A currency trader faces the following 1-day
currency exchange problem that involves U.S.
dollars, English pounds, and Japanese yen. In
the beginning of the day, he has an inventory of
40,000 dollars, 90,000 pounds, and 100,000 yen.
By the end of the day, he must have an inventory
of at least 50,000 dollars, 75,000 pounds and
60,000 yen. The exchange rates are given in an
input table (for example, one can exchange 1 U.S.
dollar for 0.61 English pound). (Refer to work-
sheet 8.19.)

During the day, the currency trader
exchanges the starting inventory for
different currencies to create the re-
quired ending inventory while maxi-
mizing the surplus inventory of U.S.
dollars. Formulate this problem as a
linear program and use the Risk Solver
Platform to find the solution.

 20. A computer company must purchase 700 cus-
tomized hard drives for the new model that is
planning to launch next year. An input table
presents the quotes received from three different
vendors. For example, Company C will require
a fixed cost of $9,000 to set up the machines

5995 Book.indb 245 8/8/11 3:12:07 PM

246 CHAPTER 8 ■ Solving Mathematical Programs

to produce the hard drives. In addition, it will
charge $270 per unit sold. Formulate the vendor
selection problem as an integer programming
model. Use the Risk Solver Platform to solve the
problem. (Refer to worksheet 8.20.)

 21. Refer to Hands-On Exercise 20. Reformulate the
problem and reoptimize using the Risk Solver
Platform under the additional constraint that
no vendor is allowed to supply more than 65% of
the total number of units required.

 22. A manufacturing company uses trucks to ship
products from the production plant to the ware-
house. The following network represents the
available routes between the plant and the ware-
house. The numbers in brackets (d, t) present the
length of the route d and the time t it takes to
cross the road segment.

 Find the shortest path (in terms of distance)
from the plant (node 1) to the warehouse (node
6). Formulate the problem as an integer pro-
gram and use Risk Solver Platform to find the
solution.

 23. Refer to Hands-On Exercise 22. Find the longest
path (in terms of time) that connects the plant
(node 1) with the warehouse (node 6). Formulate
the problem as an integer programming prob-
lem and use Risk Solver Platform to find the
solution.

 24. The Markowitz problem provides the founda-
tions for single-period investment theory. The

problem is stated as follow: “Given that an inves-
tor has n assets. The corresponding mean rates
of return are: ¯r1, ¯r2, … ¯rn and the co-variances
are σij for i, j = 1, … , n. The problem is to find
a minimum-variance portfolio for a given fixed
mean value returns (¯r).” A portfolio is defined
by a set of weights wi, i = 1, … , n, that sum to 1
(Luenberger 1998). The following is a NLP for-
mulation of the problem:

Min w wi j ij

i j

n

:
,

1
2 1

σ
=

∑

 Subject to:

w r r

w

i i
i

n

i
i

n

=

=

=

=

∑

∑

1

1
1

 Given the covariance matrix and the rates of re-
turn for three assets, find the minimum variance
portfolio that gives an expected return equal to
0.5.

v =

2 1 0
1 2 1
0 1 2

 25. Refer to the Markowitz problem stated in
Hands-On Exercise 24. Use the multiple param-
eterized optimization capabilities of Risk Solver
Platform to see the impact of increasing the
expected return from 0.5 to 0.9 (in increments
of 0.02) on portfolio variance. Graph the rela-
tionship between expected return and portfolio
variance (the efficient frontier).

5995 Book.indb 246 8/8/11 3:12:07 PM

