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204 CHAPTER 8 ■ Solving Mathematical Programs

 8.1 Introduction
This chapter illustrates how to use the Risk Solver Platform as a tool to solve mathematical 
programs. We review the basic parts of formulating a mathematical program and present 
several examples of how the Solver interprets these parts of the program from the spreadsheet. 
We give examples of linear, integer, and nonlinear programming problems to show how the 
Solver can be used to solve a variety of mathematical programs. It is important for the reader 
to understand this chapter since many IE/OR and business spreadsheet-based DSS applications 
involve solving optimization problems, which are mathematical programs. The reader should 
be comfortable with preparing the spreadsheet for use with the Solver. In Chapter 19, we revisit 
the Solver using VBA commands. We provide several examples of DSS applications that use 
the Solver to solve optimization problems, such as Portfolio Management and Optimization. 
Please refer to Appendix A for information about the Standard Solver of Excel and the Premium 
Solver of Risk Solver Platform. This appendix also discusses Limitations and Manipulations 
of the Standard Solver.

In this chapter, the reader will learn how to:

Formulate a mathematical program by determining its decision variables, constraints, ■■

and objective function.
Understand the difference between linear, integer, and nonlinear programming ■■

problems.
Use the Risk Solver Platform to solve a mathematical program.■■

Prepare the spreadsheet with the model parts and then enter the corresponding cells ■■

into the Risk Solver Task Pane.
Read the Solver reports.■■

Solve an example of linear, integer, and nonlinear programming problem using the Risk ■■

Solver Platform.

 8.2 Formulating Mathematical Programs
The Excel spreadsheet is unique because it is capable of working with complex mathematical 
models. Mathematical models transform a problem stated in words into a set of equations that 
clearly define the values that we are seeking, given the limitations of the problem. Mathematical 
models are employed in many fields, including all disciplines of engineering. In order to solve a 
mathematical model, we develop a mathematical program that can numerically be solved and 
retranslated into a qualitative solution to the mathematical model.

 8.2.1 parts of the Mathematical program
A mathematical program consists of three main parts. The first is the decision variables. Deci-
sion variables are the values that we must determine when we solve a mathematical program. 
For example, if a toy manufacturer wants to determine how many toy boats and toy cars to pro-
duce, we assign a variable to represent the quantity of toy boats produced, x1, and the quantity of 
toy cars produced, x2. Decision variables are defined as negative, non-negative, or unrestricted. 
An unrestricted variable can be either negative or non-negative. Decision variables may also be 
integer (take only integer values) or binary (take only 0 or 1 values).
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The second part of the math program, called the objective function, is an equation that 
represents the goal, or objective, of the model. In the same example of the toy manufacturer, 
we want to know the quantities of toy boats and toy cars to produce. However, the goal of the 
manufacturing plant’s production may be to increase profit. If we know that we can profit $5 
for every toy boat and $4 for every toy car, then our objective function is:

Maximize 5x1 + 4x2

In other words, we want profit to drive us in determining the quantity of boats and cars 
to produce. Objective functions are either maximized or minimized; most applications involve 
maximizing profit or minimizing cost.

The third part of the math program, the constraints, are the limitations of the problem. 
That is, if we want to maximize our profit, as in the toy manufacturer example, we could pro-
duce as many toys as possible if we did not have any limits. However, in most realistic situations, 
there are certain limitations, or constraints, that we must consider. Constraints can be a limited 
amount of resources, labor, or requirements for a particular demand. These constraints are also 
written as equations, or inequalities in terms of the decision variables. That is, if we can use 
only 20 hours of labor in a week and we need 0.5 hour to produce each toy boat and 0.3 hour to 
produce each toy car, then we write our constraint as follows:

0.5x1 + 0.3x2 ≤ 20

Summary
Decision variables: Variables assigned to quanities to be determined.

Objective Funtion: An equation that states the objective of a model.

constraints: Equations or inequalities that state limits or requirements of a problem. 

 8.2.2 Linear, integer, and Nonlinear programming
There are three main categories of problems for which we can use the above math-
ematical program parts: linear programming (LP), integer programming (IP), and 
nonlinear programming (NLP).

Linear programming problems have a linear objective function and linear constraints. 
That is, there are no variables of multiple powers such as x2 and x3, and no terms involving two 
variables such as x1x2. In addition, LP problems consist of decision variables with any range or 
interval of values, x ≥ 0 or x ≤ 0. An example of an LP would be a production problem in which 
we want to maximize profit by determining how many of several different product types we 
want to produce. The objective function could therefore be expressed as:
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where i = product number for n products, pi = profit per product i, and xi = amount produced 
of product i. This is therefore a linear objective function. If we assume that the constraints are 
also linear, then this is a linear programming problem. We will revisit this example in more 
detail in Section 8.3.1.
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206 CHAPTER 8 ■ Solving Mathematical Programs

Integer programming is related to linear programming in that both the objective function 
and constraints are linear; however, some decision variables can have only integer values in a 
given range. Integer programming is also applied when decision variables are binary, which 
means that they take only the values true or false, yes or no, go or no go—all of which are math-
ematically represented as 0 or 1, respectively. An example of an IP would be a capital budget-
ing problem in which we want to decide which projects to invest in and which not to invest 
in. This decision is a yes/no decision that can be represented by the following linear objective 
function:
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where i = project number for n projects, yi = NPV per project i, and xi = decision whether or not 
to invest in project i. What makes it an integer programming problem is that we limit the values 
of xi to 1 or 0 to reflect whether or not we have or have not invested in a project, respectively. 
We will revisit this example as well in more detail in Section 8.4.3.

Nonlinear programming problems do not have a linear objective function and/or con-
straints. NLP problems use more sophisticated methods to handle these complex equations. An 
example of a NLP would be a warehouse location problem in which we are trying to determine 
a warehouse location that minimizes the distance traveled in shipments to/from several facili-
ties. The sum of the distances from multiple facilities to this warehouse would be calculated 
as follows:
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where i = facility number for n facilities, xi and yi = coordinates of each facility i, and xw and yw 
=  coordinates of the warehouse. Even if the constraints are all linear, it is still a nonlinear pro-
gramming problem since the objective function is nonlinear. We will also revisit this example 
in more detail in Section 8.4.4.

Several algorithms, or methods of solving a mathematical program, are specific to lin-
ear, integer, and nonlinear programming problems. They must simultaneously consider each 
constraint in conjunction with the objective function. We will use the algorithms available 
in Risk Solver Platform to solve these problems. The Risk Solver Platform uses an algorithm 
called the Simplex Method to solve LP problems. The SOCP Barrier Solver uses an interior point 
method algorithm to solve LP and quadratic programming (QP) problems. The nonlinear GRG 
Solver handles smooth NLP programs. The Evolutionary Solver uses a hybrid of genetic, evolu-
tionary algorithms and classical optimization methods to solve nonsmooth problems, such as 
IP problems. The Interval Global Solver uses interval methods to solve NLP problems, or find 
solutions to a system of nonlinear equations, or find an “inner solution” to a system of nonlinear 
inequalities. Details of obtaining the Risk Solver Platform for Education are available at the 
website: www.dssbooks.com. Note that the Risk Solver Platform and its subset products, such as 
the Premium Solver, and Standard Solver (which comes with Excel) are trademarks of Frontline 
Systems, Inc. The interface of Risk Solver Platform is different from the Premium Solver and 
Excel’s Solver. The capabilities of the Premium Solver are identical to the Risk Solver Platform. 
However, the Standard Solver can use only LP Simplex, GRG Nonlinear, and Evolutionary 
algorithms. There also are limitations on the size of the problems that the Standard Solver can 
solve. Please refer to Appendix A for information about the Standard Solver.
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Summary
Linear programming: Both the objective function and the constraints are linear. Decision 

variables can have any range or interval of values.

integer programming: An LP in which decision variables can take only integer values in a 
given range or binary values.

Binary: Decision variables that take only the values 0 or 1.

Nonlinear programming: Either the objective function or constraints or both are not linear.

algorithm: A method of solving a mathematical model.

risk Solver platform: Solves LP, IP, and NLP models using a variety of algorithms.

premium Solver: Solves LP, IP, and NLP models using a variety of algorithms.

Standard Solver: Uses LP Simplex, GRG Nonlinear, and Evolutionary algorithms. 

 8.3 The Risk Solver Platform
We will now discuss how to operate the Risk Solver Platform. In general, the Solver must un-
derstand the problem’s mathematical program parts, which we take care of by preparing our 
spreadsheet to contain distinct cells for the decision variables, constraints, and objective func-
tion. We must then tell the Solver if we want to minimize or maximize the problem, or if we 
want to solve it for a particular value of the objective function. There are also several options 
that we can apply to give more specific instructions to the Solver for solving the problem.

(Note: Upon downloading Risk Solver Platform for Education from the text’s website: www.
dssbooks.com, you will see a new tab on the Ribbon. We recommend that you navigate the 
groups of commands listed in this tab in order to familiarize yourself with this package.)

 8.3.1 the risk Solver Steps
To operate the Risk Solver Platform, we must follow three steps: (1) read and interpret the 
problem, (2) prepare the spreadsheet, and (3) solve the model and review the results. We will 
now describe these steps in detail for the Risk Solver Platform using a Product Mix example 
problem. Please refer to Appendix A for a detailed description of these steps for the Standard 
Solver of Excel.

Step 1: reaD aND iNterpret the prOBLeM We must first determine the type of problem 
that we are dealing with (linear programming, integer programming, or nonlinear program-
ming) and outline the model parts (decision variables, constraints, and objective function). This 
is the most important step. It is important to model the problem correctly; otherwise, solutions 
may be incorrect and misleading. Whether the problem is an LP, IP, or NLP model does not 
affect the model parts but does affect the Engine (algorithm) that is used by the Solver. The LP, 
IP, and NLP problems may also require some additional constraint specifications. In each case, 
we still need to determine the decision variables, the objective function, and the constraints. 
We need to write these mathematically, with the objective function and constraints in terms 
of the decision variables.
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Product Mix Problem Description A company produces six different types of products. They 
want to schedule their production to determine how much of each product type should be 
produced in order to maximize their profits. This situation is known as the “Product Mix” 
problem.

Production of each product type requires labor and raw materials, but the company is lim-
ited by the amount of resources available. There is also a limited demand for each product, and 
no more than this demand per product type should be produced. Input tables for the necessary 
resources and the demand are provided.

This is a linear programming problem, as the constraints and objective function are linear 
with respect to the decision variables, as we will see below. Let’s now outline the model parts.

Product Mix Decision Variables For the amount produced of each product type, we use the fol-
lowing variable representation:

x1, x2, x3, x4, x5, x6

In other words, x1 is the amount produced of product 1, x2 is the amount produced of prod-
uct 2, etc. Note that all of these decision variables are non-negative; that is, we cannot produce 
a negative amount of any product type.

Product Mix Objective Function The objective is to maximize profit. Profit is calculated as the 
sum of the array multiplication of the unit profit, p, and the amount produced of each product 
type. We write this equation as follows:

Maximize z = Σj=1…,6 pjxj

Here, p1 is the amount of profit gained per unit of product 1. Therefore, p1*x1 is the amount 
of profit per unit of product 1 times the number of units produced of product 1, thus yielding 
the total profit from product 1. The same follows for the other products, 2 through 6.

Product Mix Constraints There are two resource constraints: labor, l, and raw material, r. Avail-
able amounts are provided for each resource, and required amounts are provided for the pro-
duction of each product type. We therefore say that the sum of the array multiplication of the 
resource requirements and the amount produced of each product type must be less than or 
equal to the amounts available of each resource. These equations are written:

Labor Constraint:
Σj=1…,6 ljxj ≤ available labor = 4500

Raw Material Constraint:
Σj=1,…6 rjxj ≤ available raw material = 1600

Here l1 is the amount of labor required per unit produced of product 1. Similarly, r1 is the 
amount of raw material required per unit produced of product 1. Therefore, the equations 
represent the total labor and raw material needed for all products.

There is also a constraint that we do not produce more than the specified demand D. 
Therefore, the amount produced of each product type must be less than or equal to the given 
demand quantities. This constraint can be written as follows:

Demand Constraint:
xj ≤ Dj   for   j = 1 to 6
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Step 2: prepare the SpreaDSheet Next, we transfer these parts of the model into our 
Excel spreadsheet, clearly defining each part of our model in the spreadsheet. The Solver inter-
prets our model according to the location of these model parts on the spreadsheet.

In Figure 8.1, we show the overall spreadsheet layout for the Product Mix problem. We have 
organized our cells by input, decision variables, constraints, and objective function.

Figure 8.1 The spreadsheet layout for the Product Mix.

Step 2.1: Place the Input Table If the input for the problem is provided for us, we just need to 
place it on the spreadsheet in the form of a table. We reference this input when forming our 
constraint and objective function formulas.

In our Product Mix problem, the input table is given. For each product type, we know the 
labor and raw materials needed to produce the product as well as the unit price and variable 
cost. We calculate the unit profit row by subtracting the variable cost from the unit price.

Step 2.2: Set the Decision Variables Cells Next, we create a column (or row) for the decision 
variables. These cells should be empty. The Solver places values in these cells for each decision 
 variable as it solves the model. We recommend naming the range of decision variables for easier 
reference in constraint and objective function formulas.

In the Product Mix problem, the decision variable cells are in the row titled “Amount 
produced.”

Step 2.3: Enter the Constraint Formulas Now we place the constraint equations in the spread-
sheet; we enter those separately, using formulas, with an optional description next to each 
constraint. Because each constraint is in terms of the decision variables, these formulas should 
be in terms of the decision variable cells already defined.

Another important consideration when laying out the constraints in preparation for the 
Solver is that there must be individual cells for the right-hand side (RHS) values as well. We 
should also place all inequality signs in their own cells. This organization will become clear 
once we explain how the Solver interprets our model.

Another advantageous way to keep our constraints organized as we use the Solver is to 
name cells. We can also group constraints that have the same inequality signs. The benefit of 
this habit will become apparent once we input the model parts for the Solver.
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In the Product Mix problem, we have labeled some ranges on the spreadsheet. We 
have named the Decision Variable range “PMDecVar,” the Labor resource requirement row 
 “PMLabor,” the Raw Material resource requirement row “PMRawMat,” and the Unit Profit row 
“PMUnitProfit.” These names will be helpful for writing the constraint and objective function 
formulas as well as for inserting cell references in the Solver, although no range names are 
needed for the Solver to work correctly.

To prepare the constraint formulas, we use the SUMPRODUCT function. Remember from 
Chapter 4 that this function takes two arrays, or ranges, as parameters for which it will multiply 
and sum all values. Referring to the equations written earlier and the range names created, we 
write the constraint formulas as follows:

Labor Constraint:
=SUMPRODUCT(PMDecVar, PMLabor)

Raw Material Constraint:
=SUMPRODUCT(PMDecVar, PMRawMat)

The right-hand side values are equal to the “Available” amounts from the Input table (see 
Figure 8.2).

Figure 8.2 The Labor and Raw Material constraint formulas use the SUMPRODUCT function.

For the demand constraint, we simply need to ensure that the values in our decision vari-
able range are less than each of the corresponding values in the “Demand” range. We do not 
require a formula for this constraint (see Figure 8.3).

Figure 8.3 The Demand Constraint does not require a formula.

Step 2.4: Enter the Objective Function Formula We can now place our objective function in a cell 
by transforming this equation into a formula in terms of the decision variables. The spreadsheet 
is now prepared for the Solver with all three parts of the model clearly displayed.

In the Product Mix problem, the objective function formula is also written with the SUM-
PRODUCT function (see Figure 8.4). Referring to the equation and range names above, we type 
the following formula:

=SUMPRODUCT(PMUnitProfit, PMDecVar)
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Figure 8.4 The objective function formula employs the SUMPRODUCT function.

Step 3: SOLve the MODeL aND review the reSULtS The Risk Solver Platform can now 
interpret this information and use algorithms to solve the model. The Solver receives the deci-
sion variables, constraint equations, and objective function equation as input into a hidden 
programming code that applies the algorithm to the data. We will explain in more detail how 
this programming works when we discuss VBA. To use the Solver, we click on the Risk Solver 
Platform > Model > Model command from the Ribbon. The task pane in Figure 8.5 then ap-
pears. The task pane lists a number of analytical tools available, such as Sensitivity Analysis, 
Optimization, Simulation, and Decision Trees. We will discuss simulation tools in Chapter 9. 
In this chapter we are interested in the optimization tools. The three important parts of the 
model that branch out of optimization tools are Objective, Variables, and Constraints. We will 
discuss how to use Parameters and Results to perform parametric optimization when solving 
the Capital Budgeting problem in Section 8.4.3.

Figure 8.5 The Risk Solver task pane reads the decision variables, constraints, and objective func-
tion as parameters of the model.
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Step 3.1: Set Objective The objective, which refers to the location of the formula for the objective 
function, can also be called the set cell. To set this cell, we select the cell where we typed the 
objective function formula (cell C22), and then click the Risk Solver Platform > Optimization 
Model > Objective button on the Ribbon. From the drop-down list that appears, we select Max 
and click on the Normal option from the flyout menu (see Figure 8.6). The objective drop-down 
menu lists other options, such as minimize the objective function or remove the current objec-
tive function of a problem. The Solver also provides options to optimize the value (Normal), 
the expected value (Expected), or the Value at Risk (VaR), etc., of the current selected cell. The 
selected objective cell will now appear in the task pane (see Figure 8.7). We can use the objective 
window of the task pane to change the address, sense, or value of the objective cell.

Figure 8.6 The Risk Solver Platform > Optimization Model > Objective button on the Ribbon is 
used to set the objective function cell and corresponding goal.

Figure 8.7 Use the objective window to change the address, sense, or value of the objective cell.

Step 3.2: Select Variables Next, we select the decision variables. We start by highlighting our 
decision variable cells, and then clicking on the Risk Solver Platform > Optimization Model > 
Decisions button on the Ribbon. From the drop-down menu that appears, select the Normal 
option. Note that if we have already named the range on our spreadsheet, that name appears au-
tomatically in the Solver task pane after the range is selected. The Solver places different values 
in these changing cells and checks the constraints and the objective function value against the 
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formulas that we have provided until all are simultaneously satisfied. Other options listed under 
the Decisions drop-down list are Recourse and Plot (see Figure 8.8). Recourse decision variables 
are used to model stochastic programming problems. The plot option graphs the relationship 
that exists between the decision variables and the objective function or the constraints.

Figure 8.8 The Risk Solver Platform > Optimization Model > Decisions button on the Ribbon is 
used to set the decision variable cells.

For the Product Mix problem, the variable cells are set to the empty decision variable cells, 
which we named “PMDecVar.” Select the objective cell C22 and click Risk Solver Platform > 
Optimization Problem > Decisions button on the Ribbon. Select Plot from the Decisions drop-
down menu. The graph in Figure 8.9 confirms that the objective function of the Product Mix 
problem is linear.

Figure 8.9 The Plot for the objective cell C22 indicates a linear relation between the decision 
variables and the objective function.
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Step 3.3: Add Constraints Now, we need to specify our constraints. To do so, we click on the 
Risk Solver Platform > Optimization Model > Constraints button from the Ribbon. From the 
Constraints drop-down menu, select Normal and then click on the <= (inequality) sign from 
the flyout menu (see Figure 8.10). The dialog box shown in Figure 8.11 then appears. We must 
include the following two pieces of information in each added constraint: the cell with the 
constraint formula and the cell with the RHS value or a directly entered numerical value. We 
click Add to define the next constraints.

Figure 8.10 Click on Risk Solver Platform > Optimization Model > Constraints button from the 
Ribbon.

Figure 8.11 Adding constraints involves selecting the cell with the equation formula, choosing 
the inequality or equality sign, and selecting the cell with the RHS value. Comments are optional.

Excel allows us to define more than one constraint at a time. By grouping constraints that 
have the same inequality signs, we can select an entire range of constraint formulas and RHS 
values and choose the common inequality sign. Naming constraints with the same inequality 
can also clarify what we add to the Solver and prevent us from making any mistakes. If multiple 
ranges are not adjacent, we can select them by holding down the CTRL key or by separating 
them with commas in the Constraint window.

We have now added all of our constraints, so we press OK. We can observe all of the 
constraints we added. For the Product Mix problem, the labor and raw material constraints 
are listed using the column of constraint formulas (C18:C19) and the column of RHS values 
(E18:E19). Then the demand constraint is listed using the decision variable cells, named “PM-
DecVar” (C13:H13) and the row of RHS values (C15:H15).

Note that demand constraints are listed as bound constraints; that means that the amount 
produced is limited (bound) by demand. To change the left-hand side, the right-hand side, and 
sense of a constraint, select the constraint from the Risk Solver task pane (as shown in Figure 
8.12). Use the constraint window that appears in the bottom of the task pane to make the changes 
necessary. Figure 8.13 presents the completed task pane for the Product Mix problem.
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Figure 8.12 Upon selection of a normal 
constraint in the task pane, the normal con-
straint window appears. Use this window to 
change the address of the selected cell with the 
equation formula, the inequality or equality 
sign, and the cell with the RHS value.

Figure 8.13 The final Risk Solver task pane 
lists decision variables, constraints, and the 
objective function of our model.

Step 3.4: Set Solver Options In Step 1 we identified ours to be a linear programming problem. 
To ensure that this is the case prior to selecting a solution method, click on the Analyze with-
out Solving button located in the upper-right corner of the task pane. The model diagnosis 
window in the bottom half of the task pane (see Figure 8.13) presents a summary of model 
characteristics. The model is diagnosed as LP Convex. All the variables, functions (objective 
and constraints), and dependencies are linear. We select Standard LP/Quadratic Engine to solve 
the problem.

Let’s review and modify some of the Risk Solver’s Platform and Engine related options 
before we do solve the model. Figure 8.14 presents the options selected in the Platform tab. We 
have changed the lower bound of the decision variables (Decision Vars Lower) to 0. We check 
that the Solve Mode is set to Solve Complete Problem, and the Intended Model Type is Linear. 
The rest of the options are kept at their default values.
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Figure 8.14 The Platform tab of task pane. Figure 8.15 The Engine tab of the task pane.

Figure 8.15 presents the options we select in the Engine tab prior to solving the problem. 
We first discuss the options listed in the General window. Max Time, is the maximum time 
that the Solver should take to find a solution to the model. We can set a maximum time at a 
small value if we want a quick answer or at a large value if we allow the Solver to try to find a 
solution over a longer period of time. If we do not get a Solver solution using the default value 
for Max Time, we may consider resolving with a larger time value. The number of iterations is 
the next option; it affects the number of iterations (pivots for the Simplex Solver, or the major 
iterations for the GRG solver) for which the Solver’s algorithm will run. We increase this value 
if the Solver is not able to find a solution initially. Primal (dual) tolerance is an upper bound on 
the amount by which the primal (dual) constraints can be violated and be considered feasible. 
Set the value of Show Iterations to True if you want the Solver to pause at every iteration. If you 
set the value of Use Automatic Scaling to True, then the Solver re-scales the values of the objec-
tive function and constraints internally. This is necessary when there is a mixture of large and 
small coefficient values in the constraints or the objective function and the possible values that 
the decision variable can take.

For example, if we are solving a binary IP problem whose decision variable values can 
only be 0 or 1 and whose constraint coefficients are in the hundreds of thousands, the Solver 
will not be able to recognize the problem as an LP model if we choose Standard LP/Quadratic 
Engine. In this case, we need to set Use Automatic Scaling to True in order to allow the Solver 
to internally scale the constraint coefficients and adjust the costs to maintain proportionality. 
Set the value of Assume Non-Negative property to True to ensure that the decision variables 
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will not take negative values. Set the value of Bypass Solver Reports to True if you do not need 
the reports related to the current solution run. This helps reducing solution time when solving 
large problems. We suggest that you keep the value of this option to True when you are in the 
process of testing and validating your model. Set the value of Presolve to True to allow the Solver 
to perform a presolve step prior to applying the primal or dual simplex method. Select either 
option from the Derivates drop-down list to determine how the Solver computes derivates when 
solving quadratic programming (QP) problems.

Step 3.5: Solve the Model and Review the Results We now click on Risk Solver Platform > Solve 
Action > Optimize button on the Ribbon. From the Optimize drop-down menu, select Solve 
Complete Problem. During the time that the Solver seeks for a solution, the Output tab of the 
task pane (see Figure 8.16) becomes active and presents a description of the different events that 
occur while the problem is being solved. When the Solver finishes, a message is displayed at 
the bottom of the task pane indicating the status of the solution, which could be: “Solver found 
a solution. All constraints and optimality conditions are satisfied”; “Solver could not find a 
feasible solution”; or “The objective (Set Cell) values do not converge.”

Figure 8.16  The Solver gives a description of the different events that occur while the problem is 
being solved. When it stops, the Solver also displays the status of the current solution.

If the Solver finds an optimal solution, then we are able to observe this solution in the 
background on our spreadsheet. The spreadsheet cells we set when formulating the model now 
have values for the decision variable cells. Therefore, they also have values in the constraint and 
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objective function cells since they contain formulas referencing the decision variable cells. We 
can confirm that all constraints have been satisfied by noting that the values in the constraint 
cells with the Solver solution are all less than or equal to, or greater than or equal to, the RHS 
values, respectively. If a solution was not found, however, our problem may be infeasible or 
unbounded. We discuss these situations in the following section. There may also be an error 
in our model, so we may want to check our constraint and objective function formulas as well 
as the Solver Options we selected.

After reviewing this solution, we can opt to have some extra reports made from the Solver 
solution: the Answer, Sensitivity, Limits, Structure and Parameter Analysis reports. We will dis-
cuss these reports in more detail later. We now use the Solver to find the solution to the Product 
Mix problem. In Figure 8.17, the completed Solver solution is shown.

Figure 8.17 The final Solver solution.

The Solver Output tab reveals that a solution was successfully found (see Figure 8.16). We 
can view the final results in Figure 8.17. Notice that all constraints are met. The company now 
knows how much to produce for each product type and what their maximum profit will be. 
(There may be multiple solutions, but the Risk Solver Platform may not display all of them. You 
may try re-solving the problem with the previous optimal solution as the starting solution.)

Summary
Steps for using the Standard Solver

Step 1: Read and Interpret the Problem

 1.1: Define Decision Variables

 1.2: Define Objective Function

 1.3: Define Constraint. 
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Step 2: Prepare the Spreadsheet

 2.1: Place the Input Table

 2.2: Set the Decision Variables Cells

 2.3: Enter the Constraint Formulas

 2.4: Enter the Objective Function Formula

Step 3: Solve the Model with Risk Solver Platform

 3.1: Set the Objective

 3.2: Select the Variables

 3.3: Add the Constraints

 3.4: Set the Solver Options

 3.5: Solve the Model and Review the Results 

infeasibility An infeasible problem is one in which at least one of the constraints cannot be 
met. For this example, we consider infeasibility based on the Demand constraint. Note in the 
solution presented in Figure 8.17 that some of the product types did not meet their demand. 
Since the demand constraint inequalities were "<=", some of the demand is not satisfied in order 
to avoid the cost of production. Now let’s assume that the company insists that the demand 
must always be met and some surplus quantities can be made too. We now need to change 
the Demand constraint inequality from “<=” to “>=”. To do so, we select the Demand (Bound) 
constraint from the Model tab of the task pane, and change the Relation property to “>=” (see 
Figure 8.18).

Figure 8.18 Changing the Demand Constraint inequality sign.
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However, now when we solve this problem, the output window of the task pane conveys that 
the Solver could not find a feasible solution with this modified constraint (see Figure 8.19). If 
there are not enough resources available to meet the demand, then the solution is infeasible. The 
Feasibility Report, which is displayed as a new worksheet in the current workbook, identifies 
the exact constraints that are violated by the current solution. Such a report is very useful when 
solving large optimization problems. The Feasibility Report for this example (see Figure 8.20) 
indicates that constraint H13 >= H15 is violated. This is the demand constraint for product 
type 6. The result of this infeasible solution is shown in Figure 8.21.

Figure 8.19 No feasible solution is found.

Unboundedness An unbounded problem is one in which the objective function can reach 
an unreasonably large number (if we are maximizing) or small number (if we are minimizing). 
Such a situation implies that the constraints are not inclusive enough. Consider, for example, 
that we want to minimize (rather than maximize) profits and the decision variables are allowed 
to take non-negative values. In this case the problem is unbounded since there are no lower 
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bounds to limit the values of the decision variables, and as a result there is no bound on the 
objective function value. Therefore, the smaller (negative) the values assigned to the decision 
variables, the smaller the objective function becomes. To observe this, select Objective from 
the Solver task pane and change its sense to Minimize as shown in Figure 8.22. Set the value 
of Assume Non-Negative to False from the General properties window, in the Engine tab of the 
task pane. Now solve the problem. This time, the Solver indicates that objective values did not 
converge (see Figure 8.23). That means the minimum value of the objective function can be 
very small if the decision variables are allowed to take negative values.

Figure 8.20 The feasibility report identifies the constraint violated by the current solution.

Figure 8.21 The infeasible result.
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Figure 8.22 Change the sense of the objective cell to Minimize.

Figure 8.23 The Solver solution does not converge when we minimize profits and relax the non-
negativity assumption.
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 8.3.2 Understanding Solver reports
The three main reports available when using the Risk Solver Platform are the Answer Report, 
the Sensitivity Report, and the Limits Report. These reports are generated by Excel and displayed 
as new worksheets in the current workbook. To generate these reports, click on the Risk Solver 
Platform > Analysis > Reports button on the Ribbon. Select Optimization from the Reports 
drop-down menu. Next, select Answer, Sensitivity or Limits reports from the fly-out menu. 
We will now briefly review what information is contained in these reports.

Figure 8.24 The Answer Report.

The Answer Report provides the original and final values of the objective cell, the decision 
variable cells, and the constraints (see Figure 8.24). It also gives the reference of all of these cells 
on the spreadsheet. The names for each cell are based on the row and column labels next to 
the tables on our spreadsheet. The formulas for the constraints are provided only as references 
for where the formulas are held; in other words, any functions used are not reported here. The 
status of the constraint part of the report conveys whether or not a constraint is binding. A 
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constraint is binding when its slack value is zero. (The slack value is the limit on the change of 
the RHS value of a constraint that will not change the objective function value. For example, 
how important is it that the raw materials be less than or equal to 1,600? In the Answer Report, 
we see that the raw material constraint is not binding, since the value found by the Solver was 
1,236 which still leaves a slack of 364. A binding constraint, on the other hand, shows that there 
can be no more improvement in the objective function. For example, the maximum allowed 
labor is used—and so that constraint is binding the objective function from further improve-
ment by increasing labor.)

The Sensitivity Report provides information about the decision variable cells and the 
constraints (see Figure 8.25) as well as their final values. The reduced cost (or shadow price) 
and the allowable increase and decrease indicate how much flexibility can be allowed with any 
of these values in order to achieve the desired objective function value. (The reduced cost is 
the change that would occur in the objective function value for every unit change of a decision 
variable value. For example, in the current solution we produce 0 of product type 1; however, 
if we produced 1 unit of product type 1, the objective function value would change by –2.4. 
The shadow price is the change that would occur in the objective function value for every unit 
change of a constraint RHS value. For instance, if we use one more unit of total labor, the objec-
tive function value would change by 1.4.)

Figure 8.25 The Sensitivity Report.

The Limits Report provides information about the Objective Cell and the Decision Variable 
Cells (see Figure 8.26); it also includes the value of each cell. The lower and upper limits of the 
Decision Variable Cells are listed next to the corresponding Objective Cell value that would 
result if the Decision Variable Cell had the limit value.
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Figure 8.26 The Limits Report.

 8.4 Applications
Mathematical models are utilized in many fields to formulate a problem into equations that can 
be solved using algorithms. The Solver allows managers and investors to solve these problems 
without knowing how the algorithms work. However, each problem must still be interpreted so 
that the Solver can read the correct objective cells, decision variable cells, and constraints. Below 
are a few examples of applications with the correct interpretation of these three model parts. 
These examples are grouped by linear, integer, and nonlinear programming problems. It is 
important to ensure that constraints and options are specified to reflect what type of problem 
is being solved.

 8.4.1 transportation problem
An example of a linear programming problem is a transportation problem. A company ships 
their products from three different plants (one in Los Angeles, one in Atlanta, and one in New 
York City) to four regions of the United States (East, Midwest, South, West). Each plant has 
a limited capacity on how many products can be sent out, and each region has a demand of 
products that they must receive. There is a different transportation cost between each plant, or 
each city, and each region. The company wants to determine how many products each plant 
should ship to each region in order to minimize the total transportation cost.

The input for this problem is in the first table in Figure 8.27. It contains the unit transpor-
tation cost between each city and each region. It also displays the capacity per plant and the 
demand per region.

The decision variables are the amount to ship from each plant to each region. We have 
created a table with empty cells for these decision variables. We may represent them mathemati-
cally as follows:

xij = amount shipped from plant in city i to region j

5995 Book.indb   225 8/8/11   3:12:03 PM



226 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.27 The spreadsheet preparation for the Transportation problem.

There are two constraints for this problem: demand and capacity. We need to ensure that 
the total number of products shipped from a plant (to each region) is less than or equal to its 
capacity, and we also need to ensure that the total number of products received by a region 
(from each plant) is greater than or equal to its demand. We have used the SUM function to 
create a column and row for these respective constraints. We have then copied the capacity 
and demand from the input table as the RHS value. We may represent these two constraints 
mathematically as follows:

Σj=1,..,4 xij ≤ ui for each i (here, ui = capacity per plant at city i)
Σi=1,..,3 xij ≤ dj for each j (here, dj = demand per region j)

We create these constraint formulas in Excel by using the SUM function. For the capacity 
constraint, we create a column titled “Sent” to the right of the decision variable table. In this 
column, we sum the total shipment amounts from each city to all plants. Each city has a sepa-
rate formula in this column. For example, for “LA,” there is a cell in the “Sent” column with 
the formula to sum all shipment amounts from “LA” shipped to each region. For the demand 
constraint, we create a row titled “Received” below the decision variable table. In this row, we 
sum the total shipment amounts from all cities to a particular plant. Each region has a separate 
formula in this row. For example, for the “East” region, there is a cell in the “Received” row with 
the formula to sum all shipment amounts from each city shipped to the “East” region.

The objective function is to minimize the total transportation costs. We need to sum the 
array multiplication between the given costs between each plant and region with the amount 
shipped between each plant and region. We can represent this mathematically as follows:

Minimize z = Σi=1,…3  Σj=1…,4 cijxij (here, cij = cost of shipping from plant in city i to region j)

To create this formula in Excel, we use the SUMPRODUCT function. We have also named 
the range of decision variables as “TransShipped” and the range of input costs as “TransCosts,” 
so the formula for the objective function is simply:
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=SUMPRODUCT(TransShipped, TransCosts)

We are now ready to use the Solver (see Figure 8.27). We set the objective cell and choose 
Min for our objective function. We then set the variables (notice that the name of this range 
appears in the Solver task pane). We add both the capacity and demand constraints to the con-
straint list. Figure 8.28 displays the completed Risk Solver task pane. It is also very important 
that we specify two options for this linear programming problem as well: select Standard LP/
Quadratic Engine as the solution method; and set the value of Assume Non-Negative property 
to True since negative values for the decision variables would not make sense in the context of 
this problem.

Figure 8.28 Completing the Risk Solver task pane.

The Solver solution appears in Figure 8.29. We have found the number of products to be 
shipped from each plant to each region and the value of the resulting minimal transportation 
cost. We can also check that all constraints have been met.

Figure 8.29 The Solver solution to the Transportation problem.
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 8.4.2 workforce Scheduling
Another example of a linear programming problem is a Workforce Scheduling problem. A 
company wants to schedule its employees for every day of the week. Employees work 5 consecu-
tive days, so the company wants to schedule on which day each employee starts working, or, in 
other words, how many employees start their five-day work week each day. There is a certain 
minimum number of employees needed each day of the week. The objective function is to find 
the schedule that minimizes the total number of employees working for the week.

As shown in the first table of Figure 8.30, the main input for this problem is the number of 
workers needed for each day of the week. We also know that each employee works 5 consecu-
tive days. We have represented this schedule in the second table by recording a sequence of 1’s 
beginning on the day listed in each row. So, the Monday row has a 1 in the Monday, Tuesday, 
Wednesday, Thursday, and Friday columns. The Tuesday row has a 1 in the Tuesday, Wednes-
day, Thursday, Friday, and Saturday columns, and so on. This table of consecutive 1’s will be 
used for the constraint formula to calculate the number of people working each day.

Figure 8.30 The spreadsheet preparation for the Workforce Scheduling problem.

The decision variables for this problem are the number of employees who will begin work-
ing (for 5 consecutive days) on each day of the week. We can represent this mathematically as 
follows:

xi = number of employees that start work on day i

The column next to the second table with empty cells (B9:B15) is for the decision variables. 
We have also named this range “SchedDecVar.”

There is only one constraint for this problem, which is to ensure that the total number of 
employees working on a given day (regardless of which day they started working) is greater 
than or equal to the number of employees needed on that particular day. We can represent this 
mathematically as follows:

Σj=1…,7 xisij ≥ di   for each i = 1,…,7    (here, sij = five-day shift values for each day j 
di = number employees needed on day i)
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To create these formulas in Excel, we again use the SUMPRODUCT function. We sum the 
array multiplication of the decision variable column with the column of 1’s for each day. Since 
we have named our decision variable range, this formula is:

=SUMPRODUCT(SchedDecVar, D9:D15)

This formula appears in Figure 8.30. The DayColumn letter value would change from D to 
J for Monday through Sunday, respectively.

The objective function is to minimize the total number of employees needed. Mathemati-
cally, this can be written as follows:

Minimize z = Σi=1…,7 xi

To determine this value, we simply need to sum the total number of employees starting on 
each day of the week. The formula we use is:

=SUM(SchedDecVar)

We are now ready to use the Solver (see Figure 8.31), so we specify the objective and choose 
Min for the objective function. We then set the variables. Notice that the name of this range 
appears in the Solver task pane. We next add one constraint to the constraint list. It is also very 
important that we specify Standard LP/Quadratic Engine for solving the problem, and set the 
Assume Non-Negative property to True.

Figure 8.31 The completed Solver task pane for the Workforce Scheduling problem.

The Solver solution, shown in Figure 8.32 reveals the number of employees who will start 
work on each day of the week. We can also check that all the constraints are met. However, we 
notice that some of the results of the decision variables and objective function are non-integer. 
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Technically, this solution is correct for the way we communicated with the Solver, but it is not 
realistic to hire a total of 19.33 employees.

Figure 8.32 The Solver solution for the Workforce Scheduling problem.

Therefore, we need to enforce integer decision variables, thus making this an integer pro-
gramming problem. To accomplish this, we first highlight the range of decision variables and 
then click on the Risk Solver Platform > Optimization Model > Constraints button on the Rib-
bon. From the Constraints drop-down menu, select Variable Type/Bound. Select Integer from 
the options in the fly-out menu as shown in Figure 8.33.

Figure 8.33 The additional constraint enforces the decision variables to be integers.

Note that an extra constraint has been added to the constraint list in the Solver task pane 
(see Figure 8.34). Since we named our decision variable range, this new constraint is displayed 
in the constraint list simply as:

SchedDecVar = integer
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Figure 8.34 The modified Solver task pane.

The updated solution now has integer values for the decision variables and an objective 
function value that is more realistic (see Figure 8.35).

Figure 8.35 The updated Solver solution for the Scheduling problem.

Let’s consider that the management is expecting an increase of business on Saturdays. 
We may wonder what will happen to the total number of employees required if the number 
needed on a Saturday increased from 9 to 16. We could increase manually the value of Number 
Required by adding one unit at a time and reoptimizing the corresponding problem. However, 
as the number of problems we test increases, this procedure will become cumbersome. The 
Risk Solver Platform provides an easier way to automate this process by performing multiple 
parameterized optimizations.
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We first need to make some modifications to our spreadsheet (see Figure 8.36) before per-
forming multiple optimizations. We have 8 different scenarios to optimize. For each scenario 
we identify the number of employees needed on a Saturday (cells M10:M17).

The first modification we make to our model is writing this formula in cell I19 (which 
represents Saturday requirements.):

=PsiOptParam(M10:M17)

Figure 8.36 Problem modifications to handle parameterized optimization.

The PsiOptParam() is a function available in Risk Solver Platform, and supports multiple 
parameterized optimizations. This function changes the value of a parameter in the problem 
(cell I19) as each optimization run is performed.

The second modification we make is writing this formula in cell N10:

=PsiOptValue($C22$,L10)

We copy this formula to cells N10:N17. The PsiOptValue() function allows us to gain access 
to the optimal solution value (cell C22) of each optimization run. Initially, the values of PsiOpt-
Value() function in cells N10:N17 is N/A since we have not executed the multiple optimization 
runs yet. Finally, we set the value of Optimizations to Run property to 8 in the Platform tab of 
Solver task pane, and solve the problem. Figure 8.37 presents the total number of employees 
needed as Saturday requirements increase. The solution presented in cells B9:B15 corresponds 
to the fourth optimization run. To observe solutions of other runs, select the corresponding 
Opt # from Tools group of Risk Solver Platform tab on the Ribbon.
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Figure 8.37 Total number of employees needed as Saturday requirements increase.

 8.4.3 capital Budgeting
An example of an integer programming problem is the Capital Budgeting problem; it has an 
additional integer constraint which allows the decision variables to take only binary values 
(0 or 1). In this problem, there are 20 projects in which a company, or individual, can invest. 
Each project’s net present value (NPV) and cost per year are provided. The company, or inves-
tor, wants to determine how much to invest in each project, given a limited amount of yearly 
funds available, in order to maximize the total NPV of the investment.

The input table lists the NPV and yearly costs for each project (see Figure 8.38).
The decision variables for this problem are the projects that we do and do not invest in. 

These will have yes/no or go/no go values. We represent these binary options using 1’s and 0’s. 
Mathematically, the decision variables can be written as follows:

yi = {0,1} = no/yes for investing in project i

We have to ensure that the decision variables are given only binary values when we add 
constraints to the Solver. We name this range “CBDecVar.”

There is only one constraint for this problem, which is that no more than the yearly avail-
able funds can be spent annually. Since each project has associated yearly costs, we must sum 
the costs of all of the projects that we have invested in each year to determine if this constraint 
is met. This constraint is written mathematically as:

Σi =1,...,20 yicij ≤ uj   for each j = 1,…,6   (here, cij = cost of investing in project i in year j)

5995 Book.indb   233 8/8/11   3:12:05 PM



234 CHAPTER 8 ■ Solving Mathematical Programs

Figure 8.38 The input table for the Capital Budgeting problem.

To create these formulas in Excel, we again use the SUMPRODUCT function. The arrays 
for this function are the decision variables and the column of yearly costs from the input table. 
Since the decision variable values are binary, only the costs for the projects in which we will 
invest will be summed. Applying the range name given to the decision variables, the formula 
for the cost incurred in year 1 is:

SUMPRODUCT(CBDecVar,D4:D23)

Similar expressions can be formed for other years. The objective function is to maximize 
the total NPV. Mathematically, it is written as follows:

Maximize z = Σi =1,...,20 yipi   (here, pi = NPV for project i)

To determine this, we sum the array multiplication of the decision variables and the col-
umn of NPV values for each project. We have named this NPV column “CB_NPV.” Using this 
range name and the name of the decision variable range, this formula is:

=SUMPRODUCT(CBDecVar, CB_NPV)

See Figure 8.39 for the location and formulation of these model parts.
Now we are ready to use the Solver. After specifying the objective cell and Max for the 

objective function, the Variables, and the one constraint, we must also include the additional 
binary variable constraint. To do so, we highlight the decision variables and use the constraints 
drop-down menu on the Ribbon to set the variable type to binary as is Figure 8.40. Now, when 
we return to the Solver task pane (see Figure 8.41), we can see that this additional constraint 
has been added as:

CBDecVar = binary
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Figure 8.39 Spreadsheet preparation for the Capital Budgeting problem.

Figure 8.40 Adding an additional constraint to enforce binary decision variable values.

We select the Standard Evolutionary Engine as the solution method for this problem, and 
set the value of Assume Non-Negative property to True. The Engine tab of the task pane dis-
plays the options of this Engine as shown in Figure 8.42. We set the values of convergence, and 
maximum time without improvement as shown, and keep the rest of the parameters at their 
default values.
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Figure 8.41 The completed Solver task pane for the Capital Budgeting problem with binary 
decision variables.

Figure 8.42 The Standard Evolutionary Engine window options.
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Now, when we apply the Solver, we find that several iterations of the Genetic Algorithm 
are being run. The objective function value for each iteration is plotted in the task pane. As 
you see from Figure 8.43, the integer gap for the solution found is zero, which implies that the 
solution found is optimal.

Figure 8.43 The Solver Results window explains why the Solver stopped.

Note that the solution found is provided as 1’s and 0’s in the column of decision variables 
(see Figure 8.44). This result can be interpreted as invest in the projects with 1’s; do not invest 
in the projects with 0’s. Therefore, in order to maximize NPV, we should invest in only 12 of 
the projects.

 8.4.4 warehouse Location
The Warehouse Location problem is an example of a nonlinear programming problem. A com-
pany stores all of its products in one warehouse. Its customers are in cities around the United 
States and the management is trying to determine the best location for their warehouse in order 
to minimize total transportations costs. Each city’s location is identified by its latitude and 
longitude. The number of shipments made to each city is also provided. We are to determine 
the warehouse location based on its latitude and longitude values.
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Figure 8.44 The Solver solution for the Capital Budgeting problem.

The input for this problem is the location of each city identified by its latitude and longitude. 
We are also provided with the number of shipments made to each city. This input is illustrated 
in the first table of Figure 8.45. We have named the column of shipments “WHShipments.”

Figure 8.45 Spreadsheet preparation for the Warehouse Location problem.
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The two decision variables are the latitude and longitude values of the warehouse location. 
We will represent them mathematically as follows:

a = warehouse latitude, b = warehouse longitude

We have created two empty cells for these and named each one “WHLat” and “WHLong,” 
respectively.

There is only one constraint for this problem, which is that the latitude and longitude for 
the warehouse location must be between the values of 0 and 120. Mathematically, this can be 
written as follows:

0 ≤ a ≤ 120
0 ≤ b ≤ 120

We only need to add the constraint that they be less than or equal to 120 since non-nega-
tivity is a Solver option.

We now need to keep track of the distances between each city and the possible warehouse 
location. These distances are calculated using the following nonlinear equation:

dj = 69√((a – aj)2 + (b – bj)2)   (here, dj = distance per city j and aj and bj are the latitude and 
longitude for each city j, respectively)

In Excel, this equation can be created using the SQRT function as follows:

=69*SQRT( (WHLat-CityLatitude)^2 + (WHLong-CityLongitude)^2)

The CityLatitude and CityLongitude are calculated from the columns of the input table for 
each city row. The SQRT function calculates the square root, which is a nonlinear manipulation 
of the decision variables. This column of distances appears in Figure 8.46. We have named this 
column “WHDist.” (Note: The value 69 is based on the earth’s curvature and is only used when 
computing latitude and longitude distances for U.S. cities.)

Figure 8.46 Calculating the distance between each city and the possible warehouse location.
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The objective function is to minimize the total distance traveled from the warehouse to 
each city. It can be written mathematically as follows:

Minimize z = Σ=1 to 14 djsj   (here, sj = shipments sent to city j)

In Excel, we use the SUMPRODUCT function to find the sum of the array multiplication 
between this column of distances and the column of shipments made to each city from the input 
table. Since we have named both of these ranges, the formula for the objective function is:

=SUMPRODUCT(WHDist, WHShipments)

See Figure 8.47. The completed optimization model is presented in Figure 8.48.

Figure 8.47 The objective function formula for the 
Warehouse Location problem.

Figure 8.48 The completed optimization model for 
the Warehouse Location problem.

Let us now use the Standard GRG Nonlinear Engine to solve this nonlinear programming 
problem. We begin by setting the objective cell and choosing Min for the objective function. 
Then we set the variables and the constraints, and set the value of Assume Non-Negative to 
True. Next, we choose Standard GRG Nonlinear Engine from the list presented in the Engine 
tab of the task pane (see Figure 8.49). We set the value of Max Time and iterations to 100, and 
keep the rest of the parameters at their default values as shown. Now we are ready to solve the 
problem. The output of Solver’s task pane indicates that the Solver has converged to the current 
solution (see Figure 8.50).
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Figure 8.49 The GRG Engine general properties.

Figure 8.50 The output tab of Solver’s task pane indicates that the Solver has converged to the current solution.

5995 Book.indb   241 8/8/11   3:12:06 PM



242 CHAPTER 8 ■ Solving Mathematical Programs

The solution appears in Figure 8.51. The latitude and longitude for the warehouse location 
are displayed with the corresponding total minimal distance to be traveled to each city for all 
shipments.

Figure 8.51 The Solver solution for the Warehouse Location problem.

To summarize, we have taken in this chapter five examples of linear programming, in-
teger programming, nonlinear programming, and parameterized optimization models, and 
demonstrated how to formulate and solve them in Excel. We have included several practice 
additional formulations in the Excel worksheets for this chapter and we encourage the reader 
to work them out.

 8.5 Summary
The three parts of a mathematical model are deci-■■

sion variables, objective function, and constraints.
The three primary types of mathematical models ■■

are linear, integer, and nonlinear programming 
problems.
Using Risk Solver Platform involves three main ■■

steps: reading and interpreting the problem to 
determine the three parts of the model, prepar-
ing the spreadsheet so that the Solver can read the 
data, and running the Solver.

Several applications of mathematical modeling ■■

exist for which Solver can be a useful tool. Some 
LP examples are transportation and workforce 
scheduling. An IP example is capital budgeting, 
and an NLP example is a warehouse location 
problem.
We use the multiple parameterized optimization ■■

capabilities of Risk Solver Platform to solve a mul-
tiscenario workforce scheduling problem.
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 8.6 Exercises
8.6.1 review Questions
 1. What are the three components of a mathemati-

cal model?
 2. How does integer programming differ from 

linear programming?
 3. How do we identify an NLP problem?
 4. What are the three main steps involved in using 

Risk Solver Platform?
 5. How should constraint equations be entered into 

a spreadsheet when using the Solver?
 6. How is the objective cell used in the Solver?
 7. How can you ensure that negative quantities are 

not produced in a Solver solution?
 8. What additional constraint is necessary to 

change a linear programming Solver model into 
an integer programming model?

 9. What additional constraint is needed to enforce 
binary decision variables?

 10. Give an example of an instance when the Solver 
could be applied to solve a problem. State what 
the objective function, decision variables, and 
constraints would be for your example.

 11. What is a parameterized optimization problem?
 12. Discuss how you would use two Risk Solver 

Platform functions dedicated to multiple param-
eterized optimizations.

 13. What are the main solution engines used by the 
Solver?

 14. What does this message imply: “Solver could not 
find a feasible solution”?

 15. What are the two parameters for the Standard 
GRG Nonlinear Engine that are set in Solver task 
pane?

8.6.2 hands-On exercises
Note: Please refer to the file “Chapter_08_Exercises.
xlsx” for the associated worksheets noted for the 
hands-on exercises. The file is available at www.dss-
books.com.

 1. Use the Risk Solver Platform to determine the 
solution to the following LP model:

Maximize Q = 3X + 4Y – 5Z
Subject to: 5X + Z ≤ 1502

 X + 4Y ≤ 100
 10Z – 2X – 3Y ≥ 20
 X, Y, Z ≥ 0

 2. A distribution center for a department store has 
four trucks available to deliver products to retail 
stores. The company accrues shipping costs for 
all boxes that it ships and losses for all boxes that 
cannot fit on one of the four trucks and must be 
shipped later. Construct a model formulation 
that minimizes the total cost by determining the 
optimal number of boxes of each product to be 
delivered by each truck. Each truck has a trailer 
volume of 1000 ft3 and a weight limit of 50,000 
lbs. (Refer to worksheet 8.2.)

 3. Referring to the model formulated in the previ-
ous exercise, use the Solver to find the optimal 
number of boxes of each product to ship in each 
truck. Adjust the values for amount, size, weight, 
cost of shipping, and loss if shipped late, and 
use the Risk Solver Platform to find the optimal 
solution.

 4. A toy company is expanding its toy vehicle 
product line. The company formerly produced 
only toy trains but now is expanding the line 
to include toy cars, trucks, and airplanes. The 
amount of each type of vehicle to produce must 
now be determined. A given table displays the 
expected production cost, sales price, required 
machine hours, and required labor hours to pro-
duce a single unit of each type of toy vehicle. It 
costs $200 an hour to run the machine that pro-
duces cars, trucks, and trains and $250 an hour 
to run the machine that produces airplanes. All 
toy assembly workers are paid a wage of $7.25 an 
hour. Based on historical data, the product line 
manager forecasts that the demand for trains, 
cars, and trucks will be at least 500 units, and 
the demand for airplanes will be at least 250 
units. The production cost of all toy vehicles 
cannot exceed $10,000, and no more than 1,000 
labor hours can be spent on production. For-
mulate this problem as an integer programming 
model that will maximize the profit earned by 
the company’s toy vehicle product line. Use the 
Risk Solver Platform to find the optimal number 
of each type of toy vehicle to produce. (Refer to 
worksheet 8.4.)
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 5. Consider the problem presented in the previous 
exercise. Use multiple parameterized optimi-
zation capabilities of the Risk Solver Platform 
to see the impact of increasing production 
costs from $10,000 to $20,000 (in increments 
of $1,000) on profits. Graph the relationship 
between production costs and optimal profits. 
Comment on the results.

 6. An agricultural supply company is developing 
a livestock feed mix that will consist of three 
ingredients: A, B, and C. An input table displays 
nutrition and cost information per ounce of each 
of these ingredients. The company wants to cre-
ate a mix that contains no more than 750 calo-
ries per ounce and no more than 10 grams of fat. 
The desired mix should also meet at least 25% 
of the Recommended Daily Allowance (RDA) 
of each of the following nutrients: Vitamin A, 
Vitamin D, and Protein. The company wants 
to develop the feed mix as cheaply as possible. 
Formulate this problem as a linear programming 
model, and use the Solver to find the optimal 
percentages of each ingredient to include in the 
feed mix. (Refer to worksheet 8.6.)

 7. Using the Solver model that you developed in 
the previous exercise to perform the following.
 a. Trace the dependents of each decision 

 variable.
 b. Trace the precedents of the target cell and 

the constraint cells.
 c. Use the multiple parameterized optimiza-

tion capabilities of Risk Solver Platform to see 
the impact of increasing the amount of calo-
ries per ounce from 750 to 1,000 (in incre-
ments of 10) on costs.

 8. A hardware manufacturer uses four worksta-
tions to produce nuts and bolts. An input table 
provides the number of minutes required to 
create a batch of nuts or bolts at each worksta-
tion. Another input table lists the cost of ma-
chining a batch of nuts or bolts. The machines at 
each workstation run for 16 hours a day, 5 days 
a week. A minimum of 700 batches of nuts and 
1,000 batches of bolts must be produced each 
week. Use the Solver to determine the optimal 
number of batches of nuts and bolts to produce 
at each workstation in order to minimize the 
cost of machining. (Refer to worksheet 8.8.)

 9. Suppose that you have $0.97 worth of coins in 
your pocket. You know that you have three times 
as many nickels as there are dimes. You also 
know that you have at least five pennies and no 
more than two quarters. Use the Solver to deter-
mine what number of each coin type you have in 
your pocket.

 10. A venture capitalist is trying to determine which 
of three projects to finance: project A, project 
B, and/or project C. She plans to finance as 
many projects as necessary to maximize her 
total return. She has a total of $400,000 to in-
vest in the first year and $200,000 to invest in 
each subsequent year. An input table displays 
the implementation cost per year (in thousands 
of dollars) of each project. Projects A, B, C will 
yield an estimated return of $550,000, $750,000, 
and $675,000, respectively, at the end of three 
years. Formulate this problem as a binary pro-
gramming model, and use the Solver to find the 
optimal combination of projects for the capital-
ist to finance. Use the multiple parameterized 
optimization capabilities of Risk Solver Platform 
to see the impact of increasing the total budget 
from $800 to $1,000 (in increments of $100) on 
maximum return. Assume that a $100 increase 
in the total budget is distributed as follows: $50 
for year 1, $25 for year 2, and $25 for year 3. 
(Refer to worksheet 8.10.)

 11. An engineering student is trying to determine 
how many hours of studying to devote to each 
of his subjects in order to maximize his overall 
grade-point average this semester. To do so, he 
predicts the grade average he will receive for 
studying different amounts of time in each of his 
classes. An input table displays his predictions. 
He wants to study no more than a total of 40 
hours per week. He estimates that the amount 
of time he should study physics is double the 
amount of time he should study economics, and 
the amount of time he should study calculus is 
in between those two values. He also estimates 
that he will devote equal amounts of time to cal-
culus and chemistry. Formulate this problem as 
a linear programming model, and use the solver 
to find the optimal solution. (Refer to worksheet 
8.11.)

 12. During each 4-hour period, a small town’s police 
force requires the following number of on-duty 

5995 Book.indb   244 8/8/11   3:12:06 PM



 SECTION 8.6 ■ Exercises 245

police officers: 8 from midnight to 4 AM, 7 from 
4 AM to 8 AM, 6 from 8 AM to noon, 6 from 
noon to 4 PM, 5 from 4 PM to 8 PM, and 4 from 
8 PM to midnight. Each police officer works two 
consecutive 4-hour shifts. Formulate and solve 
an LP that can be used to minimize the num-
ber of police officers needed to meet the daily 
 requirements.

 13. A retailer store accepts orders made by telephone 
7 days a week, from 8 AM to 5 PM. The manage-
ment has estimated the number of people needed 
daily in the call center to cover incoming orders. 
The employees work 5 consecutive days per 
week. The salary is $100/day to work on Monday 
through Friday and $150/day to work on the 
weekend. Formulate the problem as an integer 
programming problem that minimizes the cost 
of staffing the call center. Use Risk Solver Plat-
form to optimize this problem. (Refer to work-
sheet 8.13.)

 14. Refer to Hands-On Exercise 12. Suppose part-
time staff working 3 consecutive days during 
Monday to Friday can be hired at a cost of $110/
day. The increased cost reflects the higher train-
ing and turnover costs associated with part-time 
employees. The number of such staff cannot ex-
ceed 5. Extend the integer programming model 
to incorporate this option. Use the Risk Solver 
Platform to optimize the problem.

 15. A production company blends silicon and nitro-
gen to produce two types of fertilizers. Fertilizer 
1 contains 40% nitrogen and 60% silicon. Fertil-
izer 2 contains 30% nitrogen and 70% silicon. 
The selling price for fertilizer 1 is $70/lb and for 
fertilizer 2 is $40/lb. The company can purchase 
up to 80 lbs of nitrogen at $15/lb and up to 100 
lbs of silicon at $10/lb. The company should 
produce at least 80 lbs of fertilizer 1 and at least 
30 lbs of fertilizer 2. Determine the amounts 
of fertilizers 1 and 2 that maximize the profit. 
Formulate this problem as a linear programming 
problem and use the Risk Solver Platform to find 
the solution.

 16. A local bakery sells blueberry and chocolate 
muffins in packs of four. In a week, the bakery 
bakes, at most, 65 packs of muffins. The cost 
and demands per pack are presented in an input 
table. It costs $.50 to hold a pack of blueberry 
muffins and $.40 to hold a pack of chocolate 

muffins in inventory for a week. Formulate and 
solve an LP to minimize total cost of meeting 
next three weeks’ demands. (Refer to worksheet 
8.16.)

 17. A company supplies goods to three customers, 
each of whom requires 30 units. The company 
has two warehouses. Warehouse 1 has 40 units 
available and warehouse 2 has 30 units available. 
The costs of shipping 1 unit from the warehouse 
to a customer are shown in worksheet 8.17. 
There is a penalty for each unmet customer unit 
of demand. With customer 1, a penalty cost 
of $90 is incurred, with customer 2, $80, and 
with customer 3, $110. Formulate and solve a 
transportation problem to minimize the sum of 
shortage and shipping costs. (Refer to worksheet 
8.17.)

 18. Referring to the above problem, suppose that 
extra units could be purchased and shipped 
to either warehouse for a total cost of $100 per 
unit and that all customer demand must be met. 
Formulate and solve this transportation problem 
to minimize the sum of purchasing and shipping 
costs.

 19. A currency trader faces the following 1-day 
currency exchange problem that involves U.S. 
dollars, English pounds, and Japanese yen. In 
the beginning of the day, he has an inventory of 
40,000 dollars, 90,000 pounds, and 100,000 yen. 
By the end of the day, he must have an inventory 
of at least 50,000 dollars, 75,000 pounds and 
60,000 yen. The exchange rates are given in an 
input table (for example, one can exchange 1 U.S. 
dollar for 0.61 English pound). (Refer to work-
sheet 8.19.)

During the day, the currency trader 
exchanges the starting inventory for 
different currencies to create the re-
quired ending inventory while maxi-
mizing the surplus inventory of U.S. 
dollars. Formulate this problem as a 
linear program and use the Risk Solver 
Platform to find the solution.

 20. A computer company must purchase 700 cus-
tomized hard drives for the new model that is 
planning to launch next year. An input table 
presents the quotes received from three different 
vendors. For example, Company C will require 
a fixed cost of $9,000 to set up the machines 
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to produce the hard drives. In addition, it will 
charge $270 per unit sold. Formulate the vendor 
selection problem as an integer programming 
model. Use the Risk Solver Platform to solve the 
problem. (Refer to worksheet 8.20.)

 21. Refer to Hands-On Exercise 20. Reformulate the 
problem and reoptimize using the Risk Solver 
Platform under the additional constraint that 
no vendor is allowed to supply more than 65% of 
the total number of units required.

 22. A manufacturing company uses trucks to ship 
products from the production plant to the ware-
house. The following network represents the 
available routes between the plant and the ware-
house. The numbers in brackets (d, t) present the 
length of the route d and the time t it takes to 
cross the road segment.

  Find the shortest path (in terms of distance) 
from the plant (node 1) to the warehouse (node 
6). Formulate the problem as an integer pro-
gram and use Risk Solver Platform to find the 
solution.

 23. Refer to Hands-On Exercise 22. Find the longest 
path (in terms of time) that connects the plant 
(node 1) with the warehouse (node 6). Formulate 
the problem as an integer programming prob-
lem and use Risk Solver Platform to find the 
solution.

 24. The Markowitz problem provides the founda-
tions for single-period investment theory. The 

problem is stated as follow: “Given that an inves-
tor has n assets. The corresponding mean rates 
of return are: ¯r1, ¯r2, … ¯rn and the co-variances 
are σij for i, j = 1, … , n. The problem is to find 
a minimum-variance portfolio for a given fixed 
mean value returns (¯r).” A portfolio is defined 
by a set of weights wi, i = 1, … , n, that sum to 1 
(Luenberger 1998). The following is a NLP for-
mulation of the problem:
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  Given the covariance matrix and the rates of re-
turn for three assets, find the minimum variance 
portfolio that gives an expected return equal to 
0.5.
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2 1 0
1 2 1
0 1 2

 25. Refer to the Markowitz problem stated in 
Hands-On Exercise 24. Use the multiple param-
eterized optimization capabilities of Risk Solver 
Platform to see the impact of increasing the 
expected return from 0.5 to 0.9 (in increments 
of 0.02) on portfolio variance. Graph the rela-
tionship between expected return and portfolio 
variance (the efficient frontier).
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